Let (X,d) be a metric space. Let Φ be a family of real-valued functions defined on X. Sufficient conditions are given for an α(·)-monotone multifunction to be single-valued and continuous on a weakly angle-small set. As an application it is shown that a γ-paraconvex function defined on an open convex subset of a Banach space having separable dual is Fréchet differentiable on a residual set.
@article{bwmeta1.element.bwnjournal-article-smv133i1p29bwm, author = {S. Rolewicz}, title = {On a(;)-monotone multifunctions and differentiability of g-paraconvex functions}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {29-37}, zbl = {0920.47047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv133i1p29bwm} }
Rolewicz, S. On α(·)-monotone multifunctions and differentiability of γ-paraconvex functions. Studia Mathematica, Tome 133 (1999) pp. 29-37. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv133i1p29bwm/
[00000] [1] E. Asplund, Fréchet differentiability of convex functions, Acta Math. 121 (1968), 31-47. | Zbl 0162.17501
[00001] [2] A. Jourani, Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, Control Cybernet. 25 (1996), 721-737. | Zbl 0862.49018
[00002] [3] S. Mazur, Über konvexe Mengen in linearen normierten Räumen, Studia Math. 4 (1933), 70-84. | Zbl 59.1074.01
[00003] [4] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordrecht, 1997. | Zbl 0887.49001
[00004] [5] D. Preiss and L. Zajíček, Stronger estimates of smallness of sets of Fréchet nondifferentiability of convex functions, Suppl. Rend. Circ. Mat. Palermo (2) 3 (1984), 219-223. | Zbl 0547.46026
[00005] [6] S. Rolewicz, On paraconvex multifunctions, in: Third Symposium on Operation Research (Mannheim, 1978), Operations Res. Verfahren 31, Hain, Königstein/Ts., 1979, 539-546. | Zbl 0403.49021
[00006] [7] S. Rolewicz, On γ-paraconvex multifunctions, Math. Japon. 24 (1979), 293-300. | Zbl 0434.54009
[00007] [8] S. Rolewicz, Generalization of Asplund inequalities on Lipschitz functions, Arch. Math. (Basel) 61 (1993), 484-488. | Zbl 0791.49019
[00008] [9] S. Rolewicz, On an extension of Mazur's theorem on Lipschitz functions, ibid. 63 (1994), 535-540. | Zbl 0813.49018
[00009] [10] S. Rolewicz, On subdifferentials on non-convex sets, in: Different Aspects of Differentiablity, D. Przeworska-Rolewicz (ed.), Dissertationes Math. 340 (1995), 301-308. | Zbl 0957.49012
[00010] [11] S. Rolewicz, Convexity versus linearity, in: Transform Methods and Special Functions 94, P. Rusev, I. Dimovski and V. Kiryakova (eds.), Science Culture Technology Publ., Singapore, 1995, 253-263. | Zbl 0928.49018
[00011] [12] S. Rolewicz, On Φ-differentiability of functions over metric spaces, Topol. Methods Nonlinear Anal. 5 (1995), 229-236. | Zbl 0894.46030
[00012] [13] S. Rolewicz, On approximations of functions on metric spaces, Acta Univ. Lodz. Folia Math. 8 (1996), 99-108. | Zbl 0881.46032
[00013] [14] I. Singer, Abstract Convex Analysis, Wiley, 1997.