Let be a strongly continuous d-dimensional semigroup of linear contractions on , where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since , the adjoint semigroup becomes a weak*-continuous semigroup of linear contractions acting on . In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), , has a contraction majorant P(u) defined on , that is, P(u) is a positive linear contraction on such that almost everywhere on Ω for every , we prove that the local ergodic theorem holds for T*.
@article{bwmeta1.element.bwnjournal-article-smv132i3p285bwm, author = {Ryotaro Sato}, title = {On a vector-valued local ergodic theorem in $L\_$\infty$$ }, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {285-298}, zbl = {0933.47004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p285bwm} }
Sato, Ryotaro. On a vector-valued local ergodic theorem in $L_∞$ . Studia Mathematica, Tome 133 (1999) pp. 285-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p285bwm/
[00000] [1] M. A. Akcoglu and A. del Junco, Differentiation of n-dimensional additive processes, Canad. J. Math. 33 (1981), 749-768.
[00001] [2] M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes, Math. Z. 163 (1978), 199-210.
[00002] [3] R. V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), 553-559. | Zbl 0168.11701
[00003] [4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, 1977.
[00004] [5] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York, 1958. | Zbl 0084.10402
[00005] [6] R. Emilion, Semi-groups in and local ergodic theorem, Canad. Math. Bull. 29 (1986), 146-153.
[00006] [7] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.
[00007] [8] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[00008] [9] R. Sato, Vector valued differentiation theorems for multiparameter additive processes in spaces, Positivity 2 (1998), 1-18. | Zbl 0915.47012