On a vector-valued local ergodic theorem in L
Sato, Ryotaro
Studia Mathematica, Tome 133 (1999), p. 285-298 / Harvested from The Polish Digital Mathematics Library

Let T=T(u):ud+ be a strongly continuous d-dimensional semigroup of linear contractions on L1((Ω,Σ,μ);X), where (Ω,Σ,μ) is a σ-finite measure space and X is a reflexive Banach space. Since L1((Ω,Σ,μ);X)*=L((Ω,Σ,μ);X*), the adjoint semigroup T*=T*(u):ud+ becomes a weak*-continuous semigroup of linear contractions acting on L((Ω,Σ,μ);X*). In this paper the local ergodic theorem is studied for the adjoint semigroup T*. Assuming that each T(u), ud+, has a contraction majorant P(u) defined on L1((Ω,Σ,μ);), that is, P(u) is a positive linear contraction on L1((Ω,Σ,μ);) such that T(u)f(ω)P(u)f(·)(ω) almost everywhere on Ω for every L1((Ω,Σ,μ);X), we prove that the local ergodic theorem holds for T*.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216600
@article{bwmeta1.element.bwnjournal-article-smv132i3p285bwm,
     author = {Ryotaro Sato},
     title = {On a vector-valued local ergodic theorem in $L\_$\infty$$
            },
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {285-298},
     zbl = {0933.47004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p285bwm}
}
Sato, Ryotaro. On a vector-valued local ergodic theorem in $L_∞$
            . Studia Mathematica, Tome 133 (1999) pp. 285-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p285bwm/

[00000] [1] M. A. Akcoglu and A. del Junco, Differentiation of n-dimensional additive processes, Canad. J. Math. 33 (1981), 749-768.

[00001] [2] M. A. Akcoglu and U. Krengel, A differentiation theorem for additive processes, Math. Z. 163 (1978), 199-210.

[00002] [3] R. V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. Amer. Math. Soc. 15 (1964), 553-559. | Zbl 0168.11701

[00003] [4] J. Diestel and J. J. Uhl, Jr., Vector Measures, Amer. Math. Soc., Providence, 1977.

[00004] [5] N. Dunford and J. T. Schwartz, Linear Operators. Part I: General Theory, Interscience, New York, 1958. | Zbl 0084.10402

[00005] [6] R. Emilion, Semi-groups in L and local ergodic theorem, Canad. Math. Bull. 29 (1986), 146-153.

[00006] [7] U. Krengel, Ergodic Theorems, de Gruyter, Berlin, 1985.

[00007] [8] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

[00008] [9] R. Sato, Vector valued differentiation theorems for multiparameter additive processes in Lp spaces, Positivity 2 (1998), 1-18. | Zbl 0915.47012