The present paper is a contribution to fill in a gap existing between the theory of topological vector spaces and that of topological abelian groups. Topological vector spaces have been extensively studied as part of Functional Analysis. It is natural to expect that some important and elegant theorems about topological vector spaces may have analogous versions for abelian topological groups. The main obstruction to get such versions is probably the lack of the notion of convexity in the framework of groups. However, the introduction of quasi-convex sets and locally quasi-convex groups by Vilenkin [26] and the work of Banaszczyk [1] have paved the way to obtain theorems of this nature. We study here the group topologies compatible with a given duality. We have obtained, among others, the following result: for a complete metrizable topological abelian group, there always exists a finest locally quasi-convex topology with the same set of continuous characters as the original topology. We also give a description of this topology as an S-topology and we prove that, for the additive group of a complete metrizable topological vector space, it coincides with the ordinary Mackey topology.
@article{bwmeta1.element.bwnjournal-article-smv132i3p257bwm, author = {M. Chasco and E. Mart\'\i n-Peinador and V. Tarieladze}, title = {On Mackey topology for groups}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {257-284}, zbl = {0930.46006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p257bwm} }
Chasco, M.; Martín-Peinador, E.; Tarieladze, V. On Mackey topology for groups. Studia Mathematica, Tome 133 (1999) pp. 257-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p257bwm/
[00000] [1] W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Math. 1466, Springer, Berlin, 1991. | Zbl 0743.46002
[00001] [2] W. Banaszczyk and E. Martín-Peinador, The Glicksberg theorem on weakly compact sets for nuclear groups, in: Ann. New York Acad. Sci. 788, 1996, 34-39. | Zbl 0935.22003
[00002] [3] N. Bourbaki, Espaces vectoriels topologiques, Masson, Paris, 1981.
[00003] [4] M. Bruguera, Some properties of locally quasi-convex groups, Topology Appl. 77 (1997), 87-94. | Zbl 0874.22002
[00004] [5] M. J. Chasco and E. Martín-Peinador, Pontryagin reflexive groups are not determined by their continuous characters, Rocky Mountain J. Math. 28 (1998), 155-160.
[00005] [6] W. W. Comfort and K. A. Ross, Topologies induced by groups of characters, Fund. Math. 55 (1964), 283-291. | Zbl 0138.02905
[00006] [7] D. N. Dikranjan, I. R. Prodanov and L. N. Stoyanov, Topological Groups. Characters, Dualities and Minimal Group Topologies, Marcel Dekker, New York, 1990. | Zbl 0687.22001
[00007] [8] I. Fleischer and T. Traynor, Continuity of homomorphisms on a Baire group, Proc. Amer. Math. Soc. 93 (1985), 367-368. | Zbl 0588.22003
[00008] [9] I. Glicksberg, Uniform boundedness for groups, Canad. J. Math. 14 (1962), 269-276. | Zbl 0109.02001
[00009] [10] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Grundlehren Math. Wiss. 115, Springer, 1963.
[00010] [11] H. Jarchow, Locally Convex Spaces, B. G. Teubner, Stuttgart, 1981.
[00011] [12] J. Kąkol, Note on compatible vector topologies, Proc. Amer. Math. Soc. 99 (1987), 690-692. | Zbl 0629.46003
[00012] [13] J. Kąkol, The Mackey-Arens theorem for non-locally convex spaces, Collect. Math. 41 (1990), 129-132. | Zbl 0745.46009
[00013] [14] J. Kąkol, C. Pérez-García and W. Schikhof, Cardinality and Mackey topologies of non-Archimedian Banach and Fréchet spaces, Bull. Polish Acad. Sci. Math. 44 (1996), 131-141. | Zbl 0858.46056
[00014] [15] G. Köthe, Topological Vector Spaces I, Springer, Berlin, 1969. | Zbl 0179.17001
[00015] [16] I. Labuda and Z. Lipecki, On subseries convergent series and m-quasi-bases in topological linear spaces, Manuscripta Math. 38 (1982), 87-98. | Zbl 0496.46006
[00016] [17] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-631. | Zbl 0294.54010
[00017] [18] N. Noble, k-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551-561. | Zbl 0229.22012
[00018] [19] B. J. Pettis, On continuity and openness of homomorphisms in topological groups, Ann. of Math. 52 (1950), 293-308. | Zbl 0037.30501
[00019] [20] D. Remus and F. J. Trigos-Arrieta, Abelian groups which satisfy Pontryagin duality need not respect compactness, Proc. Amer. Math. Soc. 117 (1993), 1195-1200. | Zbl 0826.22002
[00020] [21] W. Roelcke and S. Dierolf, On the three-space problem for topological vector spaces, Collect. Math. 32 (1981), 3-25. | Zbl 0489.46002
[00021] [22] H. H. Schaefer, Topological Vector Spaces, Springer, 1971.
[00022] [23] M. F. Smith, The Pontryagin duality theorem in linear spaces, Ann. of Math. 56 (1952), 248-253. | Zbl 0047.10701
[00023] [24] J. P. Troallic, Sequential criteria for equicontinuity and uniformities on topological groups, Topology Appl. 68 (1996), 83-95. | Zbl 0845.54015
[00024] [25] N. T. Varopoulos, Studies in harmonic analysis, Proc. Cambridge Philos. Soc. 60 (1964), 467-516. | Zbl 0161.11103
[00025] [26] N. Ya. Vilenkin, The theory of characters of topological Abelian groups with a given boundedness, Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 439-462 (in Russian).
[00026] [27] J. H. Webb, Sequential convergence in locally convex spaces, Proc. Cambridge Philos. Soc. 64 (1968), 341-364. | Zbl 0157.20202