A dichotomy on Schreier sets
Judd, Robert
Studia Mathematica, Tome 133 (1999), p. 245-256 / Harvested from The Polish Digital Mathematics Library

We show that the Schreier sets Sα(α<ω1) have the following dichotomy property. For every hereditary collection ℱ of finite subsets of ℱ, either there exists infinite M=(mi)i=1 such that Sα(M)=mi:iE:ESα, or there exist infinite M=(mi)i=1,N such that [N](M)=mi:iF:FandFNSα.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216598
@article{bwmeta1.element.bwnjournal-article-smv132i3p245bwm,
     author = {Robert Judd},
     title = {A dichotomy on Schreier sets},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {245-256},
     zbl = {0938.46015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p245bwm}
}
Judd, Robert. A dichotomy on Schreier sets. Studia Mathematica, Tome 133 (1999) pp. 245-256. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p245bwm/

[00000] [AA] D. Alspach and S. Argyros, Complexity of weakly null sequences, Dissertationes Math. 321 (1992).

[00001] [AO] D. Alspach and E. Odell, Averaging weakly null sequences, Lecture Notes in Math. 1332, Springer, 1988, 126-144. | Zbl 0668.46011

[00002] [AD] S. Argyros and I. Deliyanni, Examples of asymptotic 1 Banach spaces, preprint.

[00003] [AMT] S. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, preprint. | Zbl 0942.46007

[00004] [FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no p, Compositio Math. 29 (1974), 179-190. | Zbl 0301.46013

[00005] [KN] P. Kiriakouli and S. Negrepontis, Baire-1 functions and spreading models of 1, preprint.

[00006] [OTW] E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to 1 and distortion in asymptotic 1 spaces, preprint.

[00007] [Sch] J. Schreier, Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62. | Zbl 56.0932.02

[00008] [T] B. S. Tsirelson, Not every Banach space contains p or c0, Functional Anal. Appl. 8 (1974), 138-141.