We show that the Schreier sets have the following dichotomy property. For every hereditary collection ℱ of finite subsets of ℱ, either there exists infinite such that , or there exist infinite such that .
@article{bwmeta1.element.bwnjournal-article-smv132i3p245bwm, author = {Robert Judd}, title = {A dichotomy on Schreier sets}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {245-256}, zbl = {0938.46015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p245bwm} }
Judd, Robert. A dichotomy on Schreier sets. Studia Mathematica, Tome 133 (1999) pp. 245-256. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p245bwm/
[00000] [AA] D. Alspach and S. Argyros, Complexity of weakly null sequences, Dissertationes Math. 321 (1992).
[00001] [AO] D. Alspach and E. Odell, Averaging weakly null sequences, Lecture Notes in Math. 1332, Springer, 1988, 126-144. | Zbl 0668.46011
[00002] [AD] S. Argyros and I. Deliyanni, Examples of asymptotic Banach spaces, preprint.
[00003] [AMT] S. Argyros, S. Mercourakis and A. Tsarpalias, Convex unconditionality and summability of weakly null sequences, preprint. | Zbl 0942.46007
[00004] [FJ] T. Figiel and W. B. Johnson, A uniformly convex Banach space which contains no , Compositio Math. 29 (1974), 179-190. | Zbl 0301.46013
[00005] [KN] P. Kiriakouli and S. Negrepontis, Baire-1 functions and spreading models of , preprint.
[00006] [OTW] E. Odell, N. Tomczak-Jaegermann and R. Wagner, Proximity to and distortion in asymptotic spaces, preprint.
[00007] [Sch] J. Schreier, Gegenbeispiel zur Theorie der schwachen Konvergenz, Studia Math. 2 (1930), 58-62. | Zbl 56.0932.02
[00008] [T] B. S. Tsirelson, Not every Banach space contains or , Functional Anal. Appl. 8 (1974), 138-141.