Transitivity for linear operators on a Banach space
Yood, Bertram
Studia Mathematica, Tome 133 (1999), p. 239-243 / Harvested from The Polish Digital Mathematics Library

Let G be the multiplicative group of invertible elements of E(X), the algebra of all bounded linear operators on a Banach space X. In 1945 Mackey showed that if x1,,xn and y1,,yn are any two sets of linearly independent elements of X with the same number of items, then there exists T ∈ G so that T(xk)=yk, k=1,,n. We prove that some proper multiplicative subgroups of G have this property.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216597
@article{bwmeta1.element.bwnjournal-article-smv132i3p239bwm,
     author = {Bertram Yood},
     title = {Transitivity for linear operators on a Banach space},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {239-243},
     zbl = {0943.47001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p239bwm}
}
Yood, Bertram. Transitivity for linear operators on a Banach space. Studia Mathematica, Tome 133 (1999) pp. 239-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p239bwm/

[00000] [1] S. Banach, Théorie des opérations linéaires, Warszawa, 1932. | Zbl 0005.20901

[00001] [2] S. R. Caradus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Marcel Dekker, New York, 1974. | Zbl 0299.46062

[00002] [3] P. Civin and B. Yood, Involutions on Banach algebras, Pacific J. Math. 9 (1959), 415-436. | Zbl 0086.09601

[00003] [4] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York, 1965.

[00004] [5] G. W. Mackey, On infinite-dimensional linear spaces, Trans. Amer. Math. Soc. 57 (1945), 155-207. | Zbl 0061.24301

[00005] [6] B. Yood, Transformations between Banach spaces in the uniform topology, Ann. of Math. 50 (1949), 486-503. | Zbl 0034.06401