Let K be a convex body in and B be the Euclidean unit ball in . We show that , where as(K) respectively as(B) is the affine surface area of K respectively B and , are general families of convex bodies constructed from K,B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].
@article{bwmeta1.element.bwnjournal-article-smv132i3p227bwm, author = {Elisabeth Werner}, title = {A general geometric construction for affine surface area}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {227-238}, zbl = {0927.52008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p227bwm} }
Werner, Elisabeth. A general geometric construction for affine surface area. Studia Mathematica, Tome 133 (1999) pp. 227-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p227bwm/
[00000] [B] W. Blaschke, Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie, Springer, 1923. | Zbl 49.0499.01
[00001] [Gr] P. Gruber, Aspects of approximation of convex bodies, in: Handbook of Convex Geometry, Vol. A, North-Holland, 1993, 321-345.
[00002] [K] K. Kiener, Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch. Math. (Basel) 46 (1986), 162-168. | Zbl 0563.52009
[00003] [L1] K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429-464.
[00004] [L2] K. Leichtweiss, Über ein Formel Blaschkes zur Affinoberfläche, Studia Sci. Math. Hungar. 21 (1986), 453-474. | Zbl 0561.53012
[00005] [Lu] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), 39-68. | Zbl 0727.53016
[00006] [Lu-O] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geometry 41 (1995), 227-246. | Zbl 0867.52003
[00007] [M-W] M. Meyer and E. Werner, The Santaló regions of a convex body, Trans. Amer. Math. Soc., to appear. | Zbl 0917.52004
[00008] [Schm] M. Schmuckenschläger, The distribution function of the convolution square of a convex symmetric body in , Israel J. Math. 78 (1992), 309-334. | Zbl 0774.52004
[00009] [S] C. Schütt, Floating body, illumination body, and polytopal approximation, preprint. | Zbl 0884.52007
[00010] [S-W] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275-290. | Zbl 0739.52008
[00011] [W] E. Werner, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257-269. | Zbl 0813.52007