A general geometric construction for affine surface area
Werner, Elisabeth
Studia Mathematica, Tome 133 (1999), p. 227-238 / Harvested from The Polish Digital Mathematics Library

Let K be a convex body in n and B be the Euclidean unit ball in n. We show that limt0(|K|-|Kt|)/(|B|-|Bt|)=as(K)/as(B), where as(K) respectively as(B) is the affine surface area of K respectively B and Ktt0, Btt0 are general families of convex bodies constructed from K,B satisfying certain conditions. As a corollary we get results obtained in [M-W], [Schm], [S-W] and [W].

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216596
@article{bwmeta1.element.bwnjournal-article-smv132i3p227bwm,
     author = {Elisabeth Werner},
     title = {A general geometric construction for affine surface area},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {227-238},
     zbl = {0927.52008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p227bwm}
}
Werner, Elisabeth. A general geometric construction for affine surface area. Studia Mathematica, Tome 133 (1999) pp. 227-238. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i3p227bwm/

[00000] [B] W. Blaschke, Vorlesungen über Differentialgeometrie II: Affine Differentialgeometrie, Springer, 1923. | Zbl 49.0499.01

[00001] [Gr] P. Gruber, Aspects of approximation of convex bodies, in: Handbook of Convex Geometry, Vol. A, North-Holland, 1993, 321-345.

[00002] [K] K. Kiener, Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch. Math. (Basel) 46 (1986), 162-168. | Zbl 0563.52009

[00003] [L1] K. Leichtweiss, Zur Affinoberfläche konvexer Körper, Manuscripta Math. 56 (1986), 429-464.

[00004] [L2] K. Leichtweiss, Über ein Formel Blaschkes zur Affinoberfläche, Studia Sci. Math. Hungar. 21 (1986), 453-474. | Zbl 0561.53012

[00005] [Lu] E. Lutwak, Extended affine surface area, Adv. Math. 85 (1991), 39-68. | Zbl 0727.53016

[00006] [Lu-O] E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geometry 41 (1995), 227-246. | Zbl 0867.52003

[00007] [M-W] M. Meyer and E. Werner, The Santaló regions of a convex body, Trans. Amer. Math. Soc., to appear. | Zbl 0917.52004

[00008] [Schm] M. Schmuckenschläger, The distribution function of the convolution square of a convex symmetric body in n, Israel J. Math. 78 (1992), 309-334. | Zbl 0774.52004

[00009] [S] C. Schütt, Floating body, illumination body, and polytopal approximation, preprint. | Zbl 0884.52007

[00010] [S-W] C. Schütt and E. Werner, The convex floating body, Math. Scand. 66 (1990), 275-290. | Zbl 0739.52008

[00011] [W] E. Werner, Illumination bodies and affine surface area, Studia Math. 110 (1994), 257-269. | Zbl 0813.52007