A new example of a non-zero quasi-nilpotent operator T with reflexive commutant is presented. The norms converge to zero arbitrarily fast.
@article{bwmeta1.element.bwnjournal-article-smv132i2p173bwm, author = {V. M\"uller and M. Zaj\k ac}, title = {A quasi-nilpotent operator with reflexive commutant, II}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {173-177}, zbl = {0923.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i2p173bwm} }
Müller, V.; Zając, M. A quasi-nilpotent operator with reflexive commutant, II. Studia Mathematica, Tome 133 (1999) pp. 173-177. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i2p173bwm/
[00000] [1] Š. Drahovský and M. Zajac, Hyperreflexive operators on finite dimensional Hilbert spaces, Math. Bohem. 118 (1993), 249-254. | Zbl 0804.47007
[00001] [2] D. Hadwin and E. A. Nordgren, Reflexivity and direct sums, Acta Sci. Math. (Szeged) 55 (1991), 181-197. | Zbl 0780.47032
[00002] [3] D. A. Herrero, A dense set of operators with tiny commutants, Trans. Amer. Math. Soc. 327 (1991), 159-183. | Zbl 0675.41050
[00003] [4] W. R. Wogen, On cyclicity of commutants, Integral Equations Operator Theory 5 (1982), 141-143. | Zbl 0473.47005
[00004] [5] M. Zajac, A quasi-nilpotent operator with reflexive commutant, Studia Math. 118 (1996), 277-283.
[00005] [6] M. Zajac, Rate of convergence to zero of powers of an hyper-reflexive operator, in: Proceedings of Workshop on Functional Analysis and its Applications in Mathematical Physics and Optimal Control (Nemecká, 1997).