We study convolution operators bounded on the non-normable Lorentz spaces of the real line and the torus. Here 0 < q < 1. On the real line, such an operator is given by convolution with a discrete measure, but on the torus a convolutor can also be an integrable function. We then give some necessary and some sufficient conditions for a measure or a function to be a convolutor on . In particular, when the positions of the atoms of a discrete measure are linearly independent over the rationals, we give a necessary and sufficient condition. This condition is, however, only sufficient in the general case.
@article{bwmeta1.element.bwnjournal-article-smv132i2p101bwm, author = {Leonardo Colzani and Peter Sj\"ogren}, title = {Translation-invariant operators on Lorentz spaces L(1,q) with 0 < q < 1}, journal = {Studia Mathematica}, volume = {133}, year = {1999}, pages = {101-124}, zbl = {0921.42004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i2p101bwm} }
Colzani, Leonardo; Sjögren, Peter. Translation-invariant operators on Lorentz spaces L(1,q) with 0 < q < 1. Studia Mathematica, Tome 133 (1999) pp. 101-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i2p101bwm/
[00000] [CO] L. Colzani, Translation invariant operators on Lorentz spaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), 257-276. | Zbl 0655.47025
[00001] [HU] R. Hunt, On L(p,q) spaces, Enseign. Math. 12 (1966), 249-287.
[00002] [KA] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968. | Zbl 0169.17902
[00003] [DLE] K. de Leeuw, On multipliers, Ann. of Math. 81 (1965), 364-379.
[00004] [SH] A. M. Shteĭnberg, Translation-invariant operators in Lorentz spaces, Funktsional. Anal. i Prilozhen. 20 (1986), no. 2, 92-93 (in Russian); English transl.: Functional Anal. Appl. 20 (1986), 166-168.
[00005] [SJ-1] P. Sjögren, Translation-invariant operators on weak , J. Funct. Anal. 89 (1990), 410-427.
[00006] [SJ-2] P. Sjögren, Convolutors on Lorentz spaces L(1,q) with 1 < q < ∞, Proc. London Math. Soc. 64 (1992), 397-417.
[00007] [SGW] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, 1971.
[00008] [SNW] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 35-54. | Zbl 0182.10801
[00009] [TU] P. Turpin, Convexités dans les espaces vectoriels topologiques généraux, Dissertationes Math. 131 (1976).