Banach spaces with a supershrinking basis
López, Ginés
Studia Mathematica, Tome 133 (1999), p. 29-36 / Harvested from The Polish Digital Mathematics Library

We prove that a Banach space X with a supershrinking basis (a special type of shrinking basis) without c0 copies is somewhat reflexive (every infinite-dimensional subspace contains an infinite-dimensional reflexive subspace). Furthermore, applying the c0-theorem by Rosenthal, it is proved that X contains order-one quasireflexive subspaces if X is not reflexive. Also, we obtain a characterization of the usual basis in c0.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216584
@article{bwmeta1.element.bwnjournal-article-smv132i1p29bwm,
     author = {Gin\'es L\'opez},
     title = {Banach spaces with a supershrinking basis},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {29-36},
     zbl = {0939.46011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i1p29bwm}
}
López, Ginés. Banach spaces with a supershrinking basis. Studia Mathematica, Tome 133 (1999) pp. 29-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i1p29bwm/

[00000] [1] J. Diestel, Sequences and Series in Banach Spaces, Springer, 1984.

[00001] [2] N. Ghoussoub and B. Maurey, Gδ-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72-97. | Zbl 0565.46011

[00002] [3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, 1977. | Zbl 0362.46013

[00003] [4] G. López and J. F. Mena, RNP and KMP are equivalent for some Banach spaces with shrinking basis, Studia Math. 118 (1996), 11-17. | Zbl 0854.46016

[00004] [5] H. Rosenthal, A subsequence principle characterizing Banach spaces containing c0, Bull. Amer. Math. Soc. 30 (1994), 227-233.

[00005] [6] H. Rosenthal, Boundedly complete weak-Cauchy sequences in Banach spaces, preprint.