On the joint spectral radius of a nilpotent Lie algebra of matrices
Boasso, Enrico
Studia Mathematica, Tome 133 (1999), p. 15-27 / Harvested from The Polish Digital Mathematics Library

For a complex nilpotent finite-dimensional Lie algebra of matrices, and a Jordan-Hölder basis of it, we prove a spectral radius formula which extends a well-known result for commuting matrices.

Publié le : 1999-01-01
EUDML-ID : urn:eudml:doc:216582
@article{bwmeta1.element.bwnjournal-article-smv132i1p15bwm,
     author = {Enrico Boasso},
     title = {On the joint spectral radius of a nilpotent Lie algebra of matrices},
     journal = {Studia Mathematica},
     volume = {133},
     year = {1999},
     pages = {15-27},
     zbl = {0926.47004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv132i1p15bwm}
}
Boasso, Enrico. On the joint spectral radius of a nilpotent Lie algebra of matrices. Studia Mathematica, Tome 133 (1999) pp. 15-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv132i1p15bwm/

[00000] [1] R. Bhatia and T. Bhattacharyya, On the joint spectral radius of commuting matrices, Studia Math. 114 (1995), 29-38. | Zbl 0830.47002

[00001] [2] E. Boasso, Dual properties and joint spectra for solvable Lie algebras of operators, J. Operator Theory 33 (1995), 105-116. | Zbl 0838.47036

[00002] [3] E. Boasso, Joint spectra and nilpotent Lie algebras of Linear transformations, Linear Algebra Appl. 263 (1997), 49-62. | Zbl 0965.47004

[00003] [4] E. Boasso and A. Larotonda, A spectral theory for solvable Lie algebras of operators, Pacific J. Math. 158 (1993), 15-22. | Zbl 0789.47004

[00004] [5] N. Bourbaki, Éléments de Mathématique, Groupes et Algèbres de Lie, Algèbres de Lie Fasc. XXVI, Hermann, 1960. | Zbl 0199.35203

[00005] [6] M. Chō and T. Huruya, On the joint spectral radius, Proc. Roy. Irish Acad. Sect. A 91 (1991), 39-44. | Zbl 0776.47004

[00006] [7] M. Chō and M. Takaguchi, Identity of Taylor's joint spectrum and Dash's joint spectrum, Studia Math. 70 (1982), 225-229. | Zbl 0494.47003

[00007] [8] N. Jacobson, Lie Algebras, Interscience Publ., 1962.

[00008] [9] A. McIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting opertors, Studia Math. 88 (1988), 23-36. | Zbl 0665.47002

[00009] [10] C. Ott, A note on a paper of E. Boasso and A. Larotonda, Pacific J. Math. 173 (1996), 173-179.

[00010] [11] Z. Słodkowski, An infinite family of joint spectra, Studia Math. 61 (1973), 239-235. | Zbl 0369.47021

[00011] [12] J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191. | Zbl 0233.47024