Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces
Krupa, G.
Studia Mathematica, Tome 129 (1998), p. 289-302 / Harvested from The Polish Digital Mathematics Library

Under different compactness assumptions pointwise and mean ergodic theorems for subadditive superstationary families of random sets whose values are weakly (or strongly) compact convex subsets of a separable Banach space are presented. The results generalize those of [14], where random sets in d are considered. Techniques used here are inspired by [3].

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216581
@article{bwmeta1.element.bwnjournal-article-smv131i3p289bwm,
     author = {G. Krupa},
     title = {Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {289-302},
     zbl = {0921.28008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p289bwm}
}
Krupa, G. Ergodic theorems for subadditive superstationary families of random sets with values in Banach spaces. Studia Mathematica, Tome 129 (1998) pp. 289-302. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p289bwm/

[00000] [1] M. Abid, Un théorème ergodique pour des processus sous-additifs et sur-stationnaires, C. R. Acad. Sci. Paris Sér. A 287 (1978), 149-152. | Zbl 0386.60028

[00001] [2] Z. Artstein and J. C. Hansen, Convexification in limit laws of random sets in Banach spaces, Ann. Probab. 13 (1985), 307-309. | Zbl 0554.60022

[00002] [3] E. J. Balder and Ch. Hess, Two generalizations of Komlós' theorem with lower closure-type applications, J. Convex Anal. 3 (1996), 25-44.

[00003] [4] J. Brooks and R. V. Chacon, Continuity and compactness of measures, Adv. Math. 37 (1980), 16-26. | Zbl 0463.28003

[00004] [5] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Math. 580, Springer, Berlin, 1977.

[00005] [6] A. Costé, La propriété de Radon-Nikodym en intégration multivoque, C. R. Acad. Sci. Paris Sér. A 280 (1975), 1515-1518. | Zbl 0313.28007

[00006] [7] A. Costé, Contribution à la théorie de l'intégration multivoque, thèse d'état, Université Pierre et Marie Curie, Paris, 1977.

[00007] [8] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1979.

[00008] [9] J. M. Hammersley, Postulates for subadditive processes, Ann. Probab. 2 (1974), 652-680. | Zbl 0303.60044

[00009] [10] Ch. Hess, On multivalued martingales whose values may be unbounded: Martingale selectors and Mosco convergence, J. Multivariate Anal. 39 (1991), 175-201. | Zbl 0746.60051

[00010] [11] F. Hiai and H. Umegaki, Integrals, conditional expectations and martingales of multivalued functions, ibid. 7 (1977), 149-182. | Zbl 0368.60006

[00011] [12] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B 30 (1968), 499-510. | Zbl 0182.22802

[00012] [13] U. Krengel, Un théorème ergodique pour les processus sur-stationnaires, C. R. Acad. Sci. Paris Sér. A 282 (1976), 1019-1021. | Zbl 0343.60017

[00013] [14] K. Schürger, Ergodic theorems for subadditive superstationary families of convex compact random sets, Z. Wahrsch. Verw. Gebiete 62 (1983), 125-135. | Zbl 0489.60005

[00014] [15] F. A. Valentine, Convex Sets, McGraw-Hill and Wiley, New York, 1968.