On inessential and improjective operators.
Aiena, Pietro ; González, Manuel
Studia Mathematica, Tome 129 (1998), p. 271-287 / Harvested from The Polish Digital Mathematics Library

We give several characterizations of the improjective operators, introduced by Tarafdar, and we characterize the inessential operators among the improjective operators. It is an interesting problem whether both classes of operators coincide in general. A positive answer would provide, for example, an intrinsic characterization of the inessential operators. We give several equivalent formulations of this problem and we show that the inessential operators acting between certain pairs of Banach spaces coincide with the improjective operators.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216580
@article{bwmeta1.element.bwnjournal-article-smv131i3p271bwm,
     author = {Pietro Aiena and Manuel Gonz\'alez},
     title = {On inessential and improjective operators.},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {271-287},
     zbl = {0937.47013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p271bwm}
}
Aiena, Pietro; González, Manuel. On inessential and improjective operators.. Studia Mathematica, Tome 129 (1998) pp. 271-287. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p271bwm/

[00000] [1] A P. Aiena, On Riesz and inessential operators, Math. Z. 201 (1989), 521-528. | Zbl 0702.47008

[00001] [2] P. Aiena and M. González, Essentially incomparable Banach spaces and Fredholm theory, Proc. Roy. Irish Acad. Sect. A 93 (1993), 49-59. | Zbl 0790.46010

[00002] [3] B. Beauzamy, Introduction to Banach Spaces and Their Geometry, 2nd ed., North-Holland, Amsterdam, 1985.

[00003] [4] G M. González, On essentially incomparable Banach spaces, Math. Z. 215 (1994), 621-629. | Zbl 0791.46011

[00004] [5] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874. | Zbl 0827.46008

[00005] [6] H. G. Heuser, Functional Analysis, Wiley, Chichester, 1982. | Zbl 0465.47001

[00006] [7] D. Kleinecke, Almost-finite, compact, and inessential operators, Proc. Amer. Math. Soc. 14 (1963), 863-868. | Zbl 0117.34201

[00007] [8] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin, 1977. | Zbl 0362.46013

[00008] [9] A. Pietsch, Inessential operators in Banach spaces, Integral Equations Operator Theory 1 (1978), 589-591. | Zbl 0399.47040

[00009] [10] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.

[00010] [11] E. Tarafdar, Improjective operators and ideals in a category of Banach spaces, J. Austral. Math. Soc. 14 (1972), 274-292. | Zbl 0251.47036

[00011] [12] E. Tarafdar, On further properties of improjective operators, ibid., 352-363. | Zbl 0251.47037

[00012] [13] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, 2nd ed., Wiley, 1980. | Zbl 0501.46003

[00013] [13] L. Weis, Perturbation classes of semi-Fredholm operators, Math. Z. 178 (1981), 429-442. | Zbl 0541.47010

[00014] [15] R. J. Whitley, Strictly singular operators and their conjugates, Trans. Amer. Math. Soc. 113 (1964), 252-261. | Zbl 0124.06603