Riesz means of Fourier transforms and Fourier series on Hardy spaces
Weisz, Ferenc
Studia Mathematica, Tome 129 (1998), p. 253-270 / Harvested from The Polish Digital Mathematics Library

Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from Hp() to Lp() (1/(α+1) < p < ∞) and is of weak type (1,1), where Hp() is the classical Hardy space. As a consequence we deduce that the Riesz means of a function L1() converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on Hp() whenever 1/(α+1) < p < ∞. Thus, in case Hp(), the Riesz means converge to ⨍ in Hp() norm (1/(α+1) < p < ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216579
@article{bwmeta1.element.bwnjournal-article-smv131i3p253bwm,
     author = {Ferenc Weisz},
     title = {Riesz means of Fourier transforms and Fourier series on Hardy spaces},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {253-270},
     zbl = {0934.42004},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p253bwm}
}
Weisz, Ferenc. Riesz means of Fourier transforms and Fourier series on Hardy spaces. Studia Mathematica, Tome 129 (1998) pp. 253-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p253bwm/

[00000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988. | Zbl 0647.46057

[00001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071

[00002] [3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137-153. | Zbl 0223.30048

[00003] [4] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser, Basel, 1971.

[00004] [5] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. | Zbl 0285.41006

[00005] [6] C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078

[00006] [7] B. S. Kashin and A. A. Saakjan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc., 1989.

[00007] [8] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132. | Zbl 65.0266.01

[00008] [9] F. Móricz, The maximal Fejér operator on the spaces H1 and L1, in: Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, Budapest, 1996, 275-292. | Zbl 0907.47022

[00009] [10] N. M. Rivière and Y. Sagher, Interpolation between L and H1, the real method, J. Funct. Anal. 14 (1973), 401-409. | Zbl 0295.46056

[00010] [11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501

[00011] [12] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. | Zbl 0232.42007

[00012] [13] F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133. | Zbl 0891.42006

[00013] [14] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049

[00014] [15] F. Weisz, The maximal Fejér operator of Fourier transforms on Hardy spaces, Acta Sci. Math. (Szeged), to appear. | Zbl 0948.42003

[00015] [16] N. Wiener, The Fourier Integral and Certain of Its Applications, Dover, New York, 1959. | Zbl 0081.32102

[00016] [17] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. | Zbl 0085.05601