Elementary estimates for the Riesz kernel and for its derivative are given. Using these we show that the maximal operator of the Riesz means of a tempered distribution is bounded from to (1/(α+1) < p < ∞) and is of weak type (1,1), where is the classical Hardy space. As a consequence we deduce that the Riesz means of a function converge a.e. to ⨍. Moreover, we prove that the Riesz means are uniformly bounded on whenever 1/(α+1) < p < ∞. Thus, in case , the Riesz means converge to ⨍ in norm (1/(α+1) < p < ∞). The same results are proved for the conjugate Riesz means and for Fourier series of distributions.
@article{bwmeta1.element.bwnjournal-article-smv131i3p253bwm, author = {Ferenc Weisz}, title = {Riesz means of Fourier transforms and Fourier series on Hardy spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {253-270}, zbl = {0934.42004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p253bwm} }
Weisz, Ferenc. Riesz means of Fourier transforms and Fourier series on Hardy spaces. Studia Mathematica, Tome 129 (1998) pp. 253-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i3p253bwm/
[00000] [1] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988. | Zbl 0647.46057
[00001] [2] J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976. | Zbl 0344.46071
[00002] [3] D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class , Trans. Amer. Math. Soc. 157 (1971), 137-153. | Zbl 0223.30048
[00003] [4] P. L. Butzer and R. J. Nessel, Fourier Analysis and Approximation, Birkhäuser, Basel, 1971.
[00004] [5] C. Fefferman, N. M. Rivière and Y. Sagher, Interpolation between spaces: the real method, Trans. Amer. Math. Soc. 191 (1974), 75-81. | Zbl 0285.41006
[00005] [6] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00006] [7] B. S. Kashin and A. A. Saakjan, Orthogonal Series, Transl. Math. Monographs 75, Amer. Math. Soc., 1989.
[00007] [8] J. Marcinkiewicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132. | Zbl 65.0266.01
[00008] [9] F. Móricz, The maximal Fejér operator on the spaces and , in: Approximation Theory and Function Series (Budapest, 1995), Bolyai Soc. Math. Stud. 5, Budapest, 1996, 275-292. | Zbl 0907.47022
[00009] [10] N. M. Rivière and Y. Sagher, Interpolation between and , the real method, J. Funct. Anal. 14 (1973), 401-409. | Zbl 0295.46056
[00010] [11] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970. | Zbl 0207.13501
[00011] [12] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971. | Zbl 0232.42007
[00012] [13] F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. 74 (1997), 123-133. | Zbl 0891.42006
[00013] [14] F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994. | Zbl 0796.60049
[00014] [15] F. Weisz, The maximal Fejér operator of Fourier transforms on Hardy spaces, Acta Sci. Math. (Szeged), to appear. | Zbl 0948.42003
[00015] [16] N. Wiener, The Fourier Integral and Certain of Its Applications, Dover, New York, 1959. | Zbl 0081.32102
[00016] [17] A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959. | Zbl 0085.05601