The authors obtain some multiplier theorems on spaces analogous to the classical multiplier theorems of de Leeuw. The main result is that a multiplier operator is bounded on if and only if the restriction is an bounded multiplier uniformly for ε>0, where Λ is the integer lattice in .
@article{bwmeta1.element.bwnjournal-article-smv131i2p189bwm, author = {Daning Chen and Dashan Fan}, title = {Multiplier transformations on $H^{p}$ spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {189-204}, zbl = {1050.42010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p189bwm} }
Chen, Daning; Fan, Dashan. Multiplier transformations on $H^{p}$ spaces. Studia Mathematica, Tome 129 (1998) pp. 189-204. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p189bwm/
[00000] [1] P. Auscher and M. J. Carro, On relations between operators on , and , Studia Math. 101 (1990), 165-182.
[00001] [2] D. Chen, Multipliers on certain function spaces, Ph.D. thesis, Univ. of Wisconsin-Milwaukee, 1998.
[00002] [3] D. Fan, Hardy spaces on compact Lie groups, Ph.D. thesis, Washington University, St. Louis, 1990.
[00003] [4] C. Fefferman and E. M. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00004] [5] D. Goldberg, A local version of real Hardy spaces, ibid. 46 (1979), 27-42. | Zbl 0409.46060
[00005] [6] C. Kenig and P. Thomas, Maximal operators defined by Fourier multipliers, Studia Math. 68 (1980), 79-83. | Zbl 0442.42013
[00006] [7] S. Krantz, Fractional integration on Hardy spaces, ibid. 73 (1982), 87-94. | Zbl 0504.47034
[00007] [8] K. de Leeuw, On multipliers, Ann. of Math. 91 (1965), 364-379.
[00008] [9] E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971. | Zbl 0232.42007