We obtain a sufficient condition on a B(H)-valued function φ for the operator to be completely bounded on ; the Foiaş-Williams-Peller operator | St Γφ | Rφ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which and are Carleson measures, then ⨍ multiplies to itself. Such ⨍ form an algebra A, and when φ’∈ BMO(B(H)), the map is bounded . Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.
@article{bwmeta1.element.bwnjournal-article-smv131i2p179bwm, author = {G. Blower}, title = {Multipliers of Hardy spaces, quadratic integrals and Foia\c s-Williams-Peller operators}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {179-188}, zbl = {0926.47015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p179bwm} }
Blower, G. Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators. Studia Mathematica, Tome 129 (1998) pp. 179-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p179bwm/
[00000] [1] O. Blasco, On the area function for H(σ _p), 1≤ p≤ 2, Bull. Polish Acad. Sci. Math. 44 (1996), 285-292. | Zbl 0893.46025
[00001] [2] G. Blower, Quadratic integrals and factorization of linear operators, J. London Math. Soc. (2) 56 (1997), 333-346.
[00002] [3] J. Bourgain, On the similarity problem for polynomially bounded operators on Hilbert space, Israel J. Math. 54 (1986), 227-241. | Zbl 0631.47008
[00003] [4] J. Bourgain, Vector-valued singular integrals and the -BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczy/nski (eds.), Marcel Dekker, New York, 1986, 1-19.
[00004] [5] K. R. Davidson and V. I. Paulsen, Polynomially bounded operators, J. Reine Angew. Math. 487 (1997), 153-170. | Zbl 0890.47013
[00005] [6] E. G. Effros and Z.-J. Ruan, On matricially normed spaces, Pacific J. Math. 132 (1988), 243-264. | Zbl 0686.46012
[00006] [7] C. Foiaş and J. P. Williams, On a class of polynomially bounded operators, preprint.
[00007] [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl 0469.30024
[00008] [9] S. Parrott, On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem, J. Funct. Anal. 30 (1978), 311-328. | Zbl 0409.47004
[00009] [10] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, ibid. 55 (1984), 1-17. | Zbl 0557.46035
[00010] [11] V. V. Peller, Estimates of functions of Hilbert space operators, similarity to a contraction and related function algebras, in: Linear and Complex Analysis Problem Book, V. P. Havin [V. P. Khavin], S. V. Hruščëv [S. V. Khrushchëv] and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1043, Springer, Berlin, 1984, 199-204.
[00011] [12] G. Pisier, Factorization of operator valued analytic functions, Adv. Math. 93 (1992), 61-125. | Zbl 0791.47015
[00012] [13] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, Berlin, 1995.
[00013] [14] G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc. 10 (1997), 351-369. | Zbl 0869.47014