Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators
Blower, G.
Studia Mathematica, Tome 129 (1998), p. 179-188 / Harvested from The Polish Digital Mathematics Library

We obtain a sufficient condition on a B(H)-valued function φ for the operator Γφ'(S) to be completely bounded on HB(H); the Foiaş-Williams-Peller operator | St Γφ | Rφ = | | | 0 S | is then similar to a contraction. We show that if ⨍ : D → B(H) is a bounded analytic function for which (1-r)||'(reiθ)||B(H)2rdrdθ and (1-r)||"(reiθ)||B(H)rdrdθ are Carleson measures, then ⨍ multiplies (H1c1)' to itself. Such ⨍ form an algebra A, and when φ’∈ BMO(B(H)), the map Γφ'(S) is bounded AB(H2(H),L2(H)H2(H)). Thus we construct a functional calculus for operators of Foiaş-Williams-Peller type.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216574
@article{bwmeta1.element.bwnjournal-article-smv131i2p179bwm,
     author = {G. Blower},
     title = {Multipliers of Hardy spaces, quadratic integrals and Foia\c s-Williams-Peller operators},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {179-188},
     zbl = {0926.47015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p179bwm}
}
Blower, G. Multipliers of Hardy spaces, quadratic integrals and Foiaş-Williams-Peller operators. Studia Mathematica, Tome 129 (1998) pp. 179-188. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p179bwm/

[00000] [1] O. Blasco, On the area function for H(σ _p), 1≤ p≤ 2, Bull. Polish Acad. Sci. Math. 44 (1996), 285-292. | Zbl 0893.46025

[00001] [2] G. Blower, Quadratic integrals and factorization of linear operators, J. London Math. Soc. (2) 56 (1997), 333-346.

[00002] [3] J. Bourgain, On the similarity problem for polynomially bounded operators on Hilbert space, Israel J. Math. 54 (1986), 227-241. | Zbl 0631.47008

[00003] [4] J. Bourgain, Vector-valued singular integrals and the H1-BMO duality, in: Probability Theory and Harmonic Analysis, J. A. Chao and W. A. Woyczy/nski (eds.), Marcel Dekker, New York, 1986, 1-19.

[00004] [5] K. R. Davidson and V. I. Paulsen, Polynomially bounded operators, J. Reine Angew. Math. 487 (1997), 153-170. | Zbl 0890.47013

[00005] [6] E. G. Effros and Z.-J. Ruan, On matricially normed spaces, Pacific J. Math. 132 (1988), 243-264. | Zbl 0686.46012

[00006] [7] C. Foiaş and J. P. Williams, On a class of polynomially bounded operators, preprint.

[00007] [8] J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981. | Zbl 0469.30024

[00008] [9] S. Parrott, On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem, J. Funct. Anal. 30 (1978), 311-328. | Zbl 0409.47004

[00009] [10] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, ibid. 55 (1984), 1-17. | Zbl 0557.46035

[00010] [11] V. V. Peller, Estimates of functions of Hilbert space operators, similarity to a contraction and related function algebras, in: Linear and Complex Analysis Problem Book, V. P. Havin [V. P. Khavin], S. V. Hruščëv [S. V. Khrushchëv] and N. K. Nikol'skiĭ (eds.), Lecture Notes in Math. 1043, Springer, Berlin, 1984, 199-204.

[00011] [12] G. Pisier, Factorization of operator valued analytic functions, Adv. Math. 93 (1992), 61-125. | Zbl 0791.47015

[00012] [13] G. Pisier, Similarity Problems and Completely Bounded Maps, Lecture Notes in Math. 1618, Springer, Berlin, 1995.

[00013] [14] G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J. Amer. Math. Soc. 10 (1997), 351-369. | Zbl 0869.47014