We show, for any Banach spaces X and Y, the denseness of the set of bilinear forms on X × Y whose third Arens transpose attains its norm. We also prove the denseness of the set of norm attaining multilinear mappings in the class of multilinear mappings which are weakly continuous on bounded sets, under some additional assumptions on the Banach spaces, and give several examples of classical spaces satisfying these hypotheses.
@article{bwmeta1.element.bwnjournal-article-smv131i2p155bwm, author = {Maria Acosta}, title = {On multilinear mappings attaining their norms.}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {155-165}, zbl = {0934.46048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p155bwm} }
Acosta, Maria. On multilinear mappings attaining their norms.. Studia Mathematica, Tome 129 (1998) pp. 155-165. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p155bwm/
[00000] [1] M. D. Acosta, F. J. Aguirre and R. Payá, There is no bilinear Bishop-Phelps Theorem, Israel J. Math. 93 (1996), 221-228. | Zbl 0852.46010
[00001] [2] F. Aguirre, Algunos problemas de optimización en dimensión infinita: aplicaciones lineales y multilineales que alcanzan su norma, doctoral dissertation, University of Granada, 1996.
[00002] [3] R. Arens, Operations induced in function classes, Monatsh. Math. 55 (1951), 1-19. | Zbl 0042.35601
[00003] [4] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. | Zbl 0044.32601
[00004] [5] R. M. Aron, C. Finet and E. Werner, Some remarks on norm-attaining n-linear forms, in: Function Spaces, K. Jarosz (ed.), Lecture Notes in Pure and Appl. Math. 172, Marcel Dekker, New York, 1995, 19-28. | Zbl 0851.46008
[00005] [6] R. M. Aron, C. Hervés and M. Valdivia, Weakly continuous mappings on Banach spaces, J. Funct. Anal. 52 (1983), 189-204. | Zbl 0517.46019
[00006] [7] J. M. Baker, A note on compact operators which attain their norm, Pacific J. Math. 82 (1979), 319-321. | Zbl 0387.47019
[00007] [8] Y. S. Choi, Norm attaining bilinear forms on , J. Math. Anal. Appl. 211 (1997), 295-300. | Zbl 0888.46007
[00008] [9] Y. S. Choi and S. G. Kim, Norm or numerical radius attaining multilinear mappings and polynomials, J. London Math. Soc. 54 (1996), 135-147. | Zbl 0858.47005
[00009] [10] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
[00010] [11] V. Dimant and I. Zalduendo, Bases in spaces of multilinear forms over Banach spaces, J. Math. Anal. Appl. 200 (1996), 548-566. | Zbl 0867.46006
[00011] [12] T. W. Gamelin, Analytic functions on Banach spaces, in: Complex Potential Theory, P. M. Gauthier and G. Sabidussi (eds.), Kluwer, 1994, 187-233. | Zbl 0803.46049
[00012] [13] R. Gonzalo and J. Jaramillo, Compact polynomials between Banach spaces, Extracta Math. 8 (1993), 42-48. | Zbl 1016.46503
[00013] [14] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5 (1953), 129-173. | Zbl 0050.10902
[00014] [15] J. Gutierrez, J. Jaramillo and J. G. Llavona, Polynomials and geometry of Banach spaces, Extracta Math. 10 (1995), 79-114.
[00015] [16] M. Jiménez Sevilla and R. Payá, Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces, Studia Math. 127 (1998), 99-112. | Zbl 0909.46015
[00016] [17] J. Johnson and J. Wolfe, Norm attaining operators, ibid. 65 (1979), 7-19. | Zbl 0432.47024
[00017] [18] D. Leung, Uniform convergence of operators and Grothendieck spaces with the Dunford-Pettis property, Math. Z. 197 (1988), 21-32. | Zbl 0618.46023
[00018] [19] J. Lindenstrauss, On operators which attain their norm, Israel J. Math. 1 (1963), 139-148. | Zbl 0127.06704
[00019] [20] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I: Sequence Spaces, Springer, Berlin, 1977. | Zbl 0362.46013
[00020] [21] P A. Pełczyński, A property of multilinear operations, Studia Math. 16 (1957), 173-182. | Zbl 0080.09701
[00021] [22] R. A. Poliquin and V. Zizler, Optimization of convex functions on w*-convex sets, Manuscripta Math. 68 (1990), 249-270. | Zbl 0714.46008
[00022] [23] V. Zizler, On some extremal problems in Banach spaces, Math. Scand. 32 (1973), 214-224. | Zbl 0269.46014