@article{bwmeta1.element.bwnjournal-article-smv131i2p149bwm, author = {Michael Lin}, title = {The uniform zero-two law for positive operators in Banach lattices}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {149-153}, zbl = {0939.47007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p149bwm} }
Lin, Michael. The uniform zero-two law for positive operators in Banach lattices. Studia Mathematica, Tome 129 (1998) pp. 149-153. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p149bwm/
[00000] [AR] G. R. Allan and T. J. Ransford, Power-dominated elements in Banach algebras, Studia Math. 94 (1989), 63-79. | Zbl 0705.46021
[00001] [B] D. Berend, A note on the analogue of the “zero-two” law, Proc. Amer. Math. Soc. 114 (1992), 95-97. | Zbl 0754.47023
[00002] [F] S. R. Foguel, More on the "zero-two" law, ibid. 61 (1976), 262-264.
[00003] [FWe] S. R. Foguel and B. Weiss, On convex power series of a conservative Markov operator, ibid. 38 (1973), 325-330. | Zbl 0268.47014
[00004] [KT] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal. 68 (1986), 312-328. | Zbl 0611.47005
[00005] [M] J. Martinez, A representation lattice isomorphism for the peripheral spectrum, Proc. Amer. Math. Soc. 119 (1993), 489-492. | Zbl 0805.47031
[00006] [OSu] D. Ornstein and L. Sucheston, An operator theorem on convergence to zero with applications to Markov kernels, Ann. Math. Statist. 41 (1970), 1631-1639. | Zbl 0284.60068
[00007] [S1] H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin, 1974. | Zbl 0296.47023
[00008] [S2] H. Schaefer, The zero-two law for positive contractions is valid in all Banach lattices, Israel J. Math. 59 (1987), 241-244. | Zbl 0657.47041
[00009] [Sc] A. Schep, A remark on the uniform zero-two law for positive contractions, Arch. Math. (Basel) 53 (1989), 493-496. | Zbl 0702.47019
[00010] [W1] R. Wittmann, Analogues of the zero-two law for positive contractions in and C(X), Israel J. Math. 59 (1987), 8-28. | Zbl 0654.46034
[00011] [W2]] R. Wittmann, Ein starkes “Null-Zwei"-Gesetz in , Math. Z. 197 (1988), 223-229.
[00012] [Z1] R. Zaharopol, The modulus of a regular operator and the “zero-two” law in -spaces (1 < p < ∞, p ≠ 2), J. Funct. Anal. 68 (1986), 300-312. | Zbl 0613.47038
[00013] [Z2] R. Zaharopol, Uniform monotonicity of norms and the strong "zero-two" law, J. Math. Anal. Appl. 139 (1989), 217-225. | Zbl 0688.47014
[00014] [Ze] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 369-385. | Zbl 0822.47005