This note presents a theorem which gives an answer to a conjecture which appears in the book Matrix Norms and Their Applications by Belitskiĭ and Lyubich and concerns the global asymptotic stability in the Schauder fixed point theorem. This is followed by a theorem which states a necessary and sufficient condition for the iterates of a holomorphic function with a fixed point to converge pointwise to this point.
@article{bwmeta1.element.bwnjournal-article-smv131i2p143bwm, author = {Mau-Hsiang Shih and Jinn-Wen Wu}, title = {Asymptotic stability in the Schauder fixed point theorem}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {143-148}, zbl = {0924.47044}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p143bwm} }
Shih, Mau-Hsiang; Wu, Jinn-Wen. Asymptotic stability in the Schauder fixed point theorem. Studia Mathematica, Tome 129 (1998) pp. 143-148. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p143bwm/
[00000] [1] G. R. Belitskiĭ and Yu. I. Lyubich, Matrix Norms and Their Applications, translated from the Russian by A. Iacob, Birkhäuser, 1988.
[00001] [2] M. S. Berger, Nonlinearity and Functional Analysis, Academic Press, 1977. | Zbl 0368.47001
[00002] [3] J. Dugundji, Topology, Allyn and Bacon, 1969.
[00003] [4] H. Federer, Geometric Measure Theory, Springer, Berlin, 1969. | Zbl 0176.00801
[00004] [5] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland, 1980. | Zbl 0447.46040
[00005] [6] L. A. Harris, Schwarz's lemma in normed linear spaces, Proc. Nat. Acad. Sci. U.S.A. 62 (1969), 1014-1017. | Zbl 0199.19401
[00006] [7] R. B. Holmes, A formula for the spectral radius of an operator, Amer. Math. Monthly 75 (1968), 163-166. | Zbl 0156.38202
[00007] [8] R. B. Kellogg, Uniqueness in the Schauder fixed point theorem, Proc. Amer. Math. Soc. 60 (1976), 207-210. | Zbl 0352.47025
[00008] [9] V. Khatskevich and D. Shoiykhet, Differentiable Operators and Nonlinear Equations, Oper. Theory Adv. Appl. 66, Birkhäuser, 1994. | Zbl 0807.46047
[00009] [10] J. Kitchen, Concerning the convergence of iterates to fixed points, Studia Math. 27 (1966), 247-249. | Zbl 0143.16601
[00010] [11] Yu. I. Lyubich, A remark on the stability of complex dynamical systems, Izv. Vyssh. Uchebn. Zaved. Mat. 10 (1983), 49-50 (in Russian); English transl.: Soviet Math. (Iz. VUZ) 10 (1983), 62-64. | Zbl 0539.34010
[00011] [12] W. Rudin, Function Theory in the Unit Ball of , Springer, 1980. | Zbl 0495.32001
[00012] [13] J. Schauder, Der Fixpunktsatz in Funktionalräumen, Studia Math. 2 (1930), 171-180. | Zbl 56.0355.01
[00013] [14] J. T. Schwartz, Nonlinear Functional Analysis, Courant Inst. Math. Sci., New York Univ., 1964.