Bq for parabolic measures
Sweezy, Caroline
Studia Mathematica, Tome 129 (1998), p. 115-135 / Harvested from The Polish Digital Mathematics Library

If Ω is a Lip(1,1/2) domain, μ a doubling measure on pΩ,/t-Li, i = 0,1, are two parabolic-type operators with coefficients bounded and measurable, 2 ≤ q < ∞, then the associated measures ω0, ω1 have the property that ω0Bq(μ) implies ω1 is absolutely continuous with respect to ω0 whenever a certain Carleson-type condition holds on the difference function of the coefficients of L1 and L0. Also ω0Bq(μ) implies ω1Bq(μ) whenever both measures are center-doubling measures. This is B. Dahlberg’s result for elliptic measures extended to parabolic-type measures on time-varying domains. The method of proof is that of Fefferman, Kenig and Pipher.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216568
@article{bwmeta1.element.bwnjournal-article-smv131i2p115bwm,
     author = {Caroline Sweezy},
     title = {$B^q$ for parabolic measures},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {115-135},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p115bwm}
}
Sweezy, Caroline. $B^q$ for parabolic measures. Studia Mathematica, Tome 129 (1998) pp. 115-135. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p115bwm/

[00000] [A] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa 22 (1968), 607-694. | Zbl 0182.13802

[00001] [RB] R. Brown, Area integral estimates for caloric functions, Trans. Amer. Math. Soc. 315 (1989), 565-589. | Zbl 0703.35077

[00002] [CW] S. Chanillo and R. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. Partial Differential Equations 11 (1986), 1111-1134. | Zbl 0634.35035

[00003] [CF] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. | Zbl 0291.44007

[00004] [D] B. E. J. Dahlberg, On the absolute continuity of elliptic measures, Amer. J. Math. 108 (1986), 1119-1138. | Zbl 0644.35032

[00005] [DJK] B. E. J. Dahlberg, D. Jerison and C. Kenig, Area integral estimates for elliptic differential operators with non-smooth coefficients, Ark. Mat. 22 (1984), 97-108. | Zbl 0537.35025

[00006] [Do] J. Doob, Classical Potential Theory and its Probabilistic Counterpart, Springer, 1984.

[00007] [FGS] E. Fabes, N. Garofalo, and S. Salsa, A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations, Illinois J. Math. 30 (1986), 536-565. | Zbl 0625.35006

[00008] [FGSII] E. Fabes, N. Garofalo, and S. Salsa, Comparison theorems for temperatures in non-cylindrical domains, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 77 (1984), 1-12. | Zbl 0625.35007

[00009] [FKP] R. Fefferman, C. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. 134 (1991), 65-124. | Zbl 0770.35014

[00010] [GS] M. Giaquinta and M. Struwe, On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z. 179 (1982), 437-451. | Zbl 0469.35028

[00011] [GW] C. Gutiérrez and R. Wheeden, Harnack's inequality for degenerate parabolic equations, Comm. Partial Differential Equations 16 (1991), 745-770. | Zbl 0746.35007

[00012] [YH] Y. Heurteaux, Inégalités de Harnack à la frontière pour des opérateurs paraboliques, C. R. Acad. Sci. Paris 308 (1989), 401-404, 441-444.

[00013] [HL] S. Hofmann and J. Lewis, L2 solvability and representation by caloric layer potentials in time-varying domains, Ann. of Math. 144 (1996), 349-420. | Zbl 0867.35037

[00014] [JK] D. Jerison and C. Kenig, Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math. 46 (1982), 80-147. | Zbl 0514.31003

[00015] [K] J. T. Kemper, Temperatures in several variables; kernel functions, representations and parabolic boundary values, Trans. Amer. Math. Soc. 167 (1972), 243-262. | Zbl 0238.35039

[00016] [CK] C. Kenig, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, CBMS Regional Conf. Ser. in Math. 83, Amer. Math. Soc., 1994.

[00017] [LSU] O. Ladyzhenskaya, V. Solonnikov, and N. Ural'tseva, Linear and Quasi-linear Equations of Parabolic Type, Transl. Math. Monographs, Amer. Math. Soc., 1968.

[00018] [N] K. Nystrom, The Dirichlet problem for second order parabolic operators, Indiana Univ. Math. J. 46 (1997), 183-245. | Zbl 0878.35010

[00019] [S] S. Salsa, Some properties of non-negative solutions of parabolic differential operators, Ann. Mat. Pura Appl. 128 (1981), 193-206. | Zbl 0477.35049

[00020] [CS] C. Sweezy, Absolute continuity for elliptic-caloric measures, Studia Math. 120 (1996), 95-112. | Zbl 0865.35059