Let be the maximal operator defined by , where g is a positive locally integrable function on ℝ. Let Φ be an N-function such that both Φ and its complementary N-function satisfy . We characterize the pairs of positive functions (u,ω) such that the weak type inequality holds for every ⨍ in the Orlicz space . We also characterize the positive functions ω such that the integral inequality holds for every . Our results include some already obtained for functions in and yield as consequences one-dimensional theorems due to Gallardo and Kerman-Torchinsky.
@article{bwmeta1.element.bwnjournal-article-smv131i2p101bwm, author = {Pedro Ortega Salvador}, title = {Weighted inequalities for one-sided maximal functions in Orlicz spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {101-114}, zbl = {0922.42012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p101bwm} }
Ortega Salvador, Pedro. Weighted inequalities for one-sided maximal functions in Orlicz spaces. Studia Mathematica, Tome 129 (1998) pp. 101-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i2p101bwm/
[00000] [G] D. Gallardo, Weighted weak type integral inequalities for the Hardy-Littlewood maximal operator, Israel J. Math. 67 (1989), 95-108. | Zbl 0683.42021
[00001] [KT] R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1981), 277-284. | Zbl 0517.42030
[00002] [KR] M. A. Krasnosel'skiĭ and V. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Noordhoff, Groningen, 1961.
[00003] [MR] F. J. Martín Reyes, New proofs of weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Proc. Amer. Math. Soc. 117 (1993), 691-698. | Zbl 0771.42011
[00004] [MOT] F. J. Martín Reyes, P. Ortega Salvador and A. de la Torre, Weighted inequalities for one-sided maximal functions, Trans. Amer. Math. Soc. 319 (1990), 517-534. | Zbl 0696.42013
[00005] [M] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, ibid. 165 (1972), 207-226. | Zbl 0236.26016
[00006] [Mu] J. Musielak, Orlicz Spaces and Modular Spaces, Springer, 1983. | Zbl 0557.46020
[00007] [S] E. Sawyer, Weighted inequalities for the one-sided Hardy-Littlewood maximal functions, Trans. Amer. Math. Soc. 297 (1986), 53-61. | Zbl 0627.42009
[00008] [SW] E. M. Stein and G. Weiss, Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, 1971.