Properties of the minimum diagonal element of a positive matrix are exploited to obtain new bounds on the eigenvalues thus exhibiting a spectral bias along the positive real axis familiar in Perron-Frobenius theory.
@article{bwmeta1.element.bwnjournal-article-smv131i1p95bwm, author = {M. Smyth and T. West}, title = {The minimum, diagonal element of a positive matrix}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {95-99}, zbl = {0922.15008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p95bwm} }
Smyth, M.; West, T. The minimum, diagonal element of a positive matrix. Studia Mathematica, Tome 129 (1998) pp. 95-99. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p95bwm/
[00000] [1] M. Fiedler and V. Pták, On matrices with non-positive off-diagonal elements and positive principal minors, Czechoslovak Math. J. 12 (87) (1962), 382-400. | Zbl 0131.24806
[00001] [2] M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Dover, Mineola, N.Y., 1992.