Let G be a group generated by r elements . Among the reduced words in of length n some, say , represent the identity element of the group G. It has been shown in a combinatorial way that the 2nth root of has a limit, called the cogrowth exponent with respect to the generators . We show by analytic methods that the numbers vary regularly, i.e. the ratio is also convergent. Moreover, we derive new precise information on the domain of holomorphy of γ(z), the generating function associated with the coefficients .
@article{bwmeta1.element.bwnjournal-article-smv131i1p89bwm, author = {Ryszard Szwarc}, title = {The ratio and generating function of cogrowth coefficients of finitely generated groups}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {89-94}, zbl = {0922.20039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p89bwm} }
Szwarc, Ryszard. The ratio and generating function of cogrowth coefficients of finitely generated groups. Studia Mathematica, Tome 129 (1998) pp. 89-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p89bwm/
[00000] [1] J. M. Cohen, Cogrowth and amenability of discrete groups, J. Funct. Anal. 48 (1982), 301-309. | Zbl 0499.20023
[00001] [2] R. I. Grigorchuk, Symmetrical random walks on discrete groups, in: Multicomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai (eds.), Nauka, Moscow, 1978, 132-152 (in Russian); English transl.: Adv. Probab. Related Topics 6, Marcel Dekker, 1980, 285-325.
[00002] [3] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 149-156.
[00003] [4] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Providence, R.I., 1975.
[00004] [5] R. Szwarc, An analytic series of irreducible representations of the free group, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 87-110. | Zbl 0634.22003
[00005] [6] R. Szwarc, A short proof of the Grigorchuk-Cohen cogrowth theorem, Proc. Amer. Math. Soc. 106 (1989), 663-665. | Zbl 0681.43004
[00006] [7] S. Wagon, Elementary problem E 3226, Amer. Math. Monthly 94 (1987), 786-787.
[00007] [8] W. Woess, Cogrowth of groups and simple random walks, Arch. Math. (Basel) 41 (1983), 363-370. | Zbl 0522.20043