The ratio and generating function of cogrowth coefficients of finitely generated groups
Szwarc, Ryszard
Studia Mathematica, Tome 129 (1998), p. 89-94 / Harvested from The Polish Digital Mathematics Library

Let G be a group generated by r elements g1,,gr. Among the reduced words in g1,,gr of length n some, say γn, represent the identity element of the group G. It has been shown in a combinatorial way that the 2nth root of γ2n has a limit, called the cogrowth exponent with respect to the generators g1,,gr. We show by analytic methods that the numbers γn vary regularly, i.e. the ratio γ2n+2/γ2n is also convergent. Moreover, we derive new precise information on the domain of holomorphy of γ(z), the generating function associated with the coefficients γn.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216565
@article{bwmeta1.element.bwnjournal-article-smv131i1p89bwm,
     author = {Ryszard Szwarc},
     title = {The ratio and generating function of cogrowth coefficients of finitely generated groups},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {89-94},
     zbl = {0922.20039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p89bwm}
}
Szwarc, Ryszard. The ratio and generating function of cogrowth coefficients of finitely generated groups. Studia Mathematica, Tome 129 (1998) pp. 89-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p89bwm/

[00000] [1] J. M. Cohen, Cogrowth and amenability of discrete groups, J. Funct. Anal. 48 (1982), 301-309. | Zbl 0499.20023

[00001] [2] R. I. Grigorchuk, Symmetrical random walks on discrete groups, in: Multicomponent Random Systems, R. L. Dobrushin and Ya. G. Sinai (eds.), Nauka, Moscow, 1978, 132-152 (in Russian); English transl.: Adv. Probab. Related Topics 6, Marcel Dekker, 1980, 285-325.

[00002] [3] H. Kesten, Full Banach mean values on countable groups, Math. Scand. 7 (1959), 149-156.

[00003] [4] G. Szegő, Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23, Providence, R.I., 1975.

[00004] [5] R. Szwarc, An analytic series of irreducible representations of the free group, Ann. Inst. Fourier (Grenoble) 38 (1988), no. 1, 87-110. | Zbl 0634.22003

[00005] [6] R. Szwarc, A short proof of the Grigorchuk-Cohen cogrowth theorem, Proc. Amer. Math. Soc. 106 (1989), 663-665. | Zbl 0681.43004

[00006] [7] S. Wagon, Elementary problem E 3226, Amer. Math. Monthly 94 (1987), 786-787.

[00007] [8] W. Woess, Cogrowth of groups and simple random walks, Arch. Math. (Basel) 41 (1983), 363-370. | Zbl 0522.20043