Let K be a compact Hausdorff space, the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and the topology in C(K) of pointwise convergence on D. It is proved that when is Lindelöf the -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and is Lindelöf, then K is metrizable if, and only if, there is a countable and dense subset D ⊂ K such that is analytic. We also show that if K is a separable Rosenthal compact space, then K is metrizable if, and only if, is Lindelöf. We complete our study by showing that if K does not contain a copy of βℕ, then convex -compact subsets of C(K) have the weak Radon-Nikodym property.
@article{bwmeta1.element.bwnjournal-article-smv131i1p73bwm, author = {B. Cascales and G. Manjabacas and G. Vera}, title = {Fragmentability and compactness in C(K)-spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {73-87}, zbl = {0938.46023}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p73bwm} }
Cascales, B.; Manjabacas, G.; Vera, G. Fragmentability and compactness in C(K)-spaces. Studia Mathematica, Tome 129 (1998) pp. 73-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p73bwm/
[00000] [1] J. Aarts and D. Lutzer, Completeness properties designed for recognizing Baire spaces, Dissertationes Math. 116 (1974). | Zbl 0296.54027
[00001] [2] A. Alexiewicz and W. Orlicz, Sur la continuité et classification de Baire des fonctions abstraites, Fund. Math. 35 (1948), 105-126.
[00002] [3] K. Alster and R. Pol, On function spaces of compact subspaces of Σ-products of the real line, ibid. 107 (1980), 135-143. | Zbl 0432.54013
[00003] [4] A. V. Arkhangel’skiĭ, A survey of -theory, Questions Answers Gen. Topology 5 (1987), 1-109 (special issue).
[00004] [5] A. V. Arkhangel’skiĭ, -theory, in: M. Hušek and J. van Mill (eds.), Recent Progress in General Topology (Prague, 1991), North-Holland, 1992, 1-56.
[00005] [6] A. V. Arkhangel'skiĭ and V. I. Ponomarev, Fundamentals of General Topology, Reidel, 1984.
[00006] [7] J. Bourgain, D. Fremlin and M. Talagrand, Pointwise compact sets of Baire measurable functions, Amer. J. Math. 100 (1978), 845-886. | Zbl 0413.54016
[00007] [8] R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lecture Notes in Math. 993, Springer, 1983. | Zbl 0512.46017
[00008] [9] A. Bouziad, Notes sur la propriété de Namioka, Trans. Amer. Math. Soc. 344 (1994), 873-883.
[00009] [10] A. Bouziad, Every Čech-analytic Baire semitopological group is a topological group, Proc. Amer. Math. Soc. 124 (1996), 953-959. | Zbl 0857.22001
[00010] [11] B. Cascales, G. Manjabacas and G. Vera, A Krein-Smulian type result in Banach spaces, Quart. J. Math. Oxford 48 (1997), 161-167. | Zbl 0886.46014
[00011] [12] B. Cascales and G. Vera, Topologies weaker than the weak topology of a Banach space, J. Math. Anal. Appl. 182 (1994), 41-68. | Zbl 0808.46021
[00012] [13] G. A. Edgar, Measurability in a Banach space I, Indiana Univ. Math. J. 26 (1977), 663-677. | Zbl 0361.46017
[00013] [14] R. Engelking, General Topology, PWN-Polish Sci. Publ., 1977.
[00014] [15] G. Godefroy, Compacts de Rosenthal, Pacific J. Math. 91 (1980), 293-306.
[00015] [16] G. Godefroy et M. Talagrand, Espaces de Banach représentables, Israel J. Math. 41 (1982), 321-330. | Zbl 0498.46016
[00016] [17] R. Haydon, On Banach spaces which contain and types of measures on compact spaces, Israel J. Math. 28 (1977), 313-324. | Zbl 0365.46020
[00017] [18] J. E. Jayne, I. Namioka and C. A. Rogers, Norm fragmented weak* compact sets, Collect. Math. 41 (1990), 133-163. | Zbl 0764.46015
[00018] [19] J. E. Jayne, I. Namioka and C. A. Rogers, Topological properties of Banach spaces, Proc. London Math. Soc. 66 (1993), 651-672. | Zbl 0793.54026
[00019] [20] J. E. Jayne and C. A. Rogers, Borel selectors for upper semi-continuous set-valued maps, Acta Math. 155 (1985), 41-79. | Zbl 0588.54020
[00020] [21] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Grundlehren Math. Wiss. 208, Springer, Berlin, 1974. | Zbl 0285.46024
[00021] [22] W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. 20 (1970), 507-524. | Zbl 0199.37802
[00022] [23] I. Namioka, Separate continuity and joint continuity, Pacific J. Math. 51 (1974), 515-531. | Zbl 0294.54010
[00023] [24] I. Namioka, Radon-Nikodým compact spaces and fragmentability, Mathematika 34 (1989), 258-281. | Zbl 0654.46017
[00024] [25] H. P. Rosenthal, A characterization of Banach spaces containing , Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. | Zbl 0297.46013
[00025] [26] C. Stegall, Functions of the first Baire class, Proc. Amer. Math. Soc. 111 (1991), 981-991.
[00026] [27] M. Talagrand, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438. | Zbl 0393.46019
[00027] [28] M. Talagrand, Sur les mesures vectorielles définies par une application Pettis-intégrable, Bull. Soc. Math. France 108 (1980), 475-483. | Zbl 0459.46029
[00028] [29] M. Talagrand, Sur les espaces de Banach contenant , Israel J. Math. 40 (1981), 324-330.
[00029] [30] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 307 (1984).
[00030] [31] F. Topsoe and J. Hoffmann-Jorgensen, Analytic sets, chapter in: Analytic Spaces and Their Applications (Part 3), Academic Press, 1980, 317-398.
[00031] [32] S. Varadarajan, Measures on topological spaces, Amer. Math. Soc. Transl. 48 (1965), 161-228.
[00032] [33] G. Vera, Pointwise compactness and continuity of the integral, Rev. Mat. Univ. Complut. Madrid 9 (1996), 221-245 (special issue). | Zbl 0873.28005