Let G be a homogeneous Lie group. We prove that for every closed, homogeneous subset Γ of G* which is invariant under the coadjoint action, there exists a regular kernel P such that P goes to 0 in any representation from Γ and P satisfies the Rockland condition outside Γ. We prove a subelliptic estimate as an application.
@article{bwmeta1.element.bwnjournal-article-smv131i1p63bwm, author = {Waldemar Hebisch}, title = {On operators satisfying the Rockland condition}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {63-71}, zbl = {0924.22007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p63bwm} }
Hebisch, Waldemar. On operators satisfying the Rockland condition. Studia Mathematica, Tome 129 (1998) pp. 63-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p63bwm/
[00000] [1] I. D. Brown, Dual topology of a nilpotent Lie group, Ann. Sci. École Norm. Sup. 6 (1973), 407-411. | Zbl 0284.57026
[00001] [2] M. Christ, D. Geller, P. Głowacki and L. Pollin, Pseudodifferential operators on groups with dilations, Duke Math. J. 68 (1992), 31-65. | Zbl 0764.35120
[00002] [3] R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. | Zbl 0224.43006
[00003] [4] R. Coifman et G. Weiss, Transference Methods in Analysis, CBMS Regional Conf. Ser. in Math. 31, Amer. Math. Soc., Providence, 1977. | Zbl 0371.43009
[00004] [5] J. Dziuba/nski, A remark on a Marcinkiewicz-Hörmander multiplier theorem for some non-differential convolution operators, Colloq. Math. 58 (1989), 77-83. | Zbl 0711.43003
[00005] [6] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982. | Zbl 0508.42025
[00006] [7] P. Głowacki, Stable semi-groups of measures as commutative approximate identities on non-graded homogeneous groups, Invent. Math. 83 (1986), 557-582. | Zbl 0595.43006
[00007] [8] P. Głowacki, The inversion problem for singular integral operators on homogeneous groups, Studia Math. 87 (1987), 53-69. | Zbl 0646.47034
[00008] [9] P. Głowacki, The Rockland condition for nondifferential convolution operators, Duke Math. J. 58 (1989), 371-395. | Zbl 0678.43002
[00009] [10] P. Głowacki, The Rockland condition for nondifferential convolution operators II, Studia Math. 98 (1991), 99-114. | Zbl 0737.43002
[00010] [11] B. Helffer et J. Nourrigat, Caractérisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe gradué, Comm. Partial Differential Equations 3 (1978), 889-958. | Zbl 0423.35040
[00011] [12] A. Hulanicki and J. W. Jenkins, Nilpotent Lie groups and summability of eigenfunction expansions of Schrödinger operators, Studia Math. 80 (1984), 235-244. | Zbl 0564.43007
[00012] [13] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk 17 (4) (1962), 57-110 (in Russian).
[00013] [14] J. Nourrigat, Inégalités et représentations de groupes nilpotents, J. Funct. Anal. 74 (1987), 300-327. | Zbl 0644.35026
[00014] [15] J. Nourrigat, inequalities and representations of nilpotent groups, C.I.M.P.A. School of Harmonic Analysis, Wuhan, to appear. | Zbl 0644.35026