Quasiconformal mappings and Sobolev spaces
Koskela, Pekka ; MacManus, Paul
Studia Mathematica, Tome 129 (1998), p. 1-17 / Harvested from The Polish Digital Mathematics Library

We examine how Poincaré change under quasiconformal maps between appropriate metric spaces having the same Hausdorff dimension. We also show that for many metric spaces the Sobolev functions can be identified with functions satisfying Poincaré, and this allows us to extend to the metric space setting the fact that quasiconformal maps from Q onto Q preserve the Sobolev space L1,Q(Q).

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216562
@article{bwmeta1.element.bwnjournal-article-smv131i1p1bwm,
     author = {Pekka Koskela and Paul MacManus},
     title = {Quasiconformal mappings and Sobolev spaces},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {1-17},
     zbl = {0918.30011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p1bwm}
}
Koskela, Pekka; MacManus, Paul. Quasiconformal mappings and Sobolev spaces. Studia Mathematica, Tome 129 (1998) pp. 1-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p1bwm/

[00000] [GR] V. M. Gol'dshteĭn and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer, Dordrecht, 1990.

[00001] [Ha] P. Hajłasz, Sobolev spaces on an arbitrary metric space, Potential Anal. 5 (1996), 403-415. | Zbl 0859.46022

[00002] [HaK1] P. Hajłasz and P. Koskela, Sobolev meets Poincaré, C. R. Acad. Sci. Paris 320 (1995), 1211-1215. | Zbl 0837.46024

[00003] [HaK2] P. Hajłasz and P. Koskela, Sobolev met Poincaré, preprint. | Zbl 0954.46022

[00004] [HKM] J. Heinonen, T. Kilpeläinen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, Oxford, 1993.

[00005] [HeK1] J. Heinonen and P. Koskela, From local to global in quasiconformal structures, Proc. Nat. Acad. Sci. U.S.A. 93 (1996), 554-556. | Zbl 0842.30016

[00006] [HeK2] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math., to appear. | Zbl 0915.30018

[00007] [KS] J. N. Korevaar and R. M. Schoen, Sobolev spaces and harmonic maps for metric space targets, Comm. Anal. Geom. 1 (1993), 561-659. | Zbl 0862.58004

[00008] [K1] P. Koskela, Removable sets for Sobolev spaces, Ark. Mat., to appear. | Zbl 1070.46502

[00009] [K2] P. Koskela, The degree of regularity of a quasiconformal mapping, Proc. Amer. Math. Soc. 122 (1994), 769-772. | Zbl 0814.30015

[00010] [L] L. Lewis, Quasiconformal mapping and Royden algebras in space, Trans. Amer. Math. Soc. 158 (1971), 481-496. | Zbl 0214.38302

[00011] [S] S. Semmes, Finding curves on general spaces through quantitative topology with applications for Sobolev and Poincaré inequalities, Selecta Math. (N.S.) 2 (1996), 155-295. | Zbl 0870.54031

[00012] [ST] J. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989. | Zbl 0676.42021

[00013] [T] J. Tyson, Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math., to appear. | Zbl 0910.30022

[00014] [TV] P. Tukia and J. Väisälä, Quasisymmetric embeddings of metric spaces, ibid. 5 (1980), 97-114. | Zbl 0403.54005

[00015] [Z] W. P. Ziemer, Change of variables for absolutely continuous functions, Duke Math. J. 36 (1969), 171-178. | Zbl 0177.08006