Metric unconditionality and Fourier analysis
Neuwirth, Stefan
Studia Mathematica, Tome 129 (1998), p. 19-62 / Harvested from The Polish Digital Mathematics Library

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces LEp() and CE() of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces pE(), p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between LEp() and LEp+2(). These arithmetical conditions are used to construct counterexamples for several natural questions and to investigate the maximal density of such sets E. We also prove that if E=nkk1 with |nk+1/nk|, then CE() has umap and we get a sharp estimate of the Sidon constant of Hadamard sets. Finally, we touch on the relationship of metric unconditionality and probability theory.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216561
@article{bwmeta1.element.bwnjournal-article-smv131i1p19bwm,
     author = {Stefan Neuwirth},
     title = {Metric unconditionality and Fourier analysis},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {19-62},
     zbl = {0930.42005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p19bwm}
}
Neuwirth, Stefan. Metric unconditionality and Fourier analysis. Studia Mathematica, Tome 129 (1998) pp. 19-62. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv131i1p19bwm/

[00000] [1] I. Berkes, On almost i.i.d. subsequences of the trigonometric system, in: Functional Analysis (Austin, 1986-87), E. W. Odell and H. P. Rosenthal (eds.), Lecture Notes in Math. 1332, Springer, 1988, 54-63.

[00001] [2] I. Berkes, Probability theory of the trigonometric system, in: Limit Theorems in Probability and Statistics (Pécs, 1989), I. Berkes, E. Csáki and P. Révész (eds.), Colloq. Math. Soc. János Bolyai 57, North-Holland, 1990, 35-58. | Zbl 0749.60020

[00002] [3] J. P. M. Binet, Note sur une question relative à la théorie des nombres, C. R. Acad. Sci. Paris 12 (1841), 248-250.

[00003] [4] E. Bishop, A general Rudin-Carleson theorem, Proc. Amer. Math. Soc. 13 (1962), 140-143. | Zbl 0101.08807

[00004] [5] J. Bourgain and H. P. Rosenthal, Geometrical implications of certain finite dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82. | Zbl 0463.46011

[00005] [6] V. Brouncker, Letter to John Wallis, in: Œuvres de Fermat 3, Gauthier-Villars, 1896, 419-420.

[00006] [7] P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces (Strobl, 1989), P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1991, 49-63. | Zbl 0743.41027

[00007] [8] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, Pitman Monographs Surveys 64, Longman, 1993. | Zbl 0782.46019

[00008] [9] Diophantus of Alexandria, Les six livres arithmétiques et le livre des nombres polygones, Blanchard, 1959.

[00009] [10] R. L. Ekl, Equal sums of four seventh powers, Math. Comp. 65 (1996), 1755-1756. | Zbl 0853.11024

[00010] [11] L. Euler, Solutio generalis quorundam problematum Diophanteorum, quae vulgo nonnisi solutiones speciales admittere videntur, in: Opera Omnia (I) II, Teubner, 1915, 428-458.

[00011] [12] L. Euler, Observationes circa bina biquadrata, quorum summam in duo alia biquadrata resolvere liceat, in: Opera Omnia (I) III, Teubner, 1917, 211-217.

[00012] [13] L. Euler, Specimen algorithmi singularis, in: Opera Omnia (I) XV, Teubner, 1927, 31-49.

[00013] [14] M. Feder, On subspaces of spaces with an unconditional basis and spaces of operators, Illinois J. Math. 24 (1980), 196-205. | Zbl 0411.46009

[00014] [15] F. Forelli, The isometries of Hp, Canad. J. Math. 16 (1964), 721-728. | Zbl 0132.09403

[00015] [16] J. J. F. Fournier, Two UC-sets whose union is not a UC-set, Proc. Amer. Math. Soc. 84 (1982), 69-72. | Zbl 0511.43003

[00016] [17] G. Godefroy and N. J. Kalton, Approximating sequences and bidual projections, Quart. J. Math. Oxford (2) 48 (1997), 179-202. | Zbl 0886.46020

[00017] [18] G. Godefroy, N. J. Kalton and D. Li, On subspaces of L1 which embed into 1, J. Reine Angew. Math. 471 (1996), 43-75.

[00018] [19] G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. | Zbl 0814.46012

[00019] [20] G. Godefroy and P. D. Saphar, Duality in spaces of operators and smooth norms on Banach spaces, Illinois J. Math. 32 (1988), 672-695. | Zbl 0631.46015

[00020] [21] H. Halberstam and K. F. Roth, Sequences, 2nd ed., Springer, 1983.

[00021] [22] S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111. | Zbl 0645.43004

[00022] [23] N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157. | Zbl 0496.10036

[00023] [24] B. Host, J.-F. Méla et F. Parreau, Analyse harmonique des mesures, Astérisque 135-136 (1986). | Zbl 0589.43001

[00024] [25] W. B. Johnson, H. P. Rosenthal and M. Zippin, On bases, finite dimensional decompositions and weaker structures in Banach spaces, Israel J. Math. 9 (1971), 488-506. | Zbl 0217.16103

[00025] [26] J.-P. Kahane, Sur les fonctions moyenne-périodiques bornées, Ann. Inst. Fourier (Grenoble) 7 (1957), 293-314. | Zbl 0083.34401

[00026] [27] N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278. | Zbl 0266.47038

[00027] [28] N. J. Kalton and D. Werner, Property(M), M-ideals, and almost isometric structure of Banach spaces, J. Reine Angew. Math. 461 (1995), 137-178.

[00028] [29] A. L. Koldobsky, Isometries of Lp(X;Lq) and equimeasurability, Indiana Univ. Math. J. 40 (1991), 677-705.

[00029] [30] D. Li, On Hilbert sets and CΛ(G)-spaces with no subspace isomorphic to c0, Colloq. Math. 68 (1995), 67-77; addendum, ibid., p. 79. | Zbl 0848.43006

[00030] [31] D. Li, Complex Unconditional Metric Approximation Property for CΛ() spaces, Studia Math. 121 (1996), 231-247.

[00031] [32] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, 1977. | Zbl 0362.46013

[00032] [33] J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series, J. London Math. Soc. 6 (1931), 230-233. | Zbl 0002.18803

[00033] [34] J. M. López and K. A. Ross, Sidon Sets, Marcel Dekker, 1975.

[00034] [35] F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835. | Zbl 0324.43007

[00035] [36] B. Maurey, Isomorphismes entre espaces H1, Acta Math. 145 (1980), 79-120.

[00036] [37] Y. Meyer, Endomorphismes des idéaux fermés de L1(G), classes de Hardy et séries de Fourier lacunaires, Ann. Sci. École Norm. Sup. (4) 1 (1968), 499-580. | Zbl 0169.18001

[00037] [38] Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972. | Zbl 0267.43001

[00038] [39] I. M. Miheev [I. M. Mikheev], On lacunary series, Math. USSR-Sb. 27 (1975), 481-502. | Zbl 0371.42006

[00039] [40] A. Moessner, Einige numerische Identitäten, Proc. Indian Acad. Sci. Sect. A 10 (1939), 296-306. | Zbl 65.1144.04

[00040] [41] L. J. Mordell, Diophantine Equations, Academic Press, 1969.

[00041] [42] T. Murai, On lacunary series, Nagoya Math. J. 85 (1982), 87-154.

[00042] [43] A. Pełczyński, On simultaneous extension of continuous functions. A generalization of theorems of Rudin-Carleson and Bishop, Studia Math. 24 (1964), 285-304; supplement, ibid. 25 (1965), 157-161. | Zbl 0145.16204

[00043] [44] A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite-dimensional expansions of identity and universal bases of finite-dimensional subspaces, ibid. 40 (1971), 91-108. | Zbl 0221.46014

[00044] [45] G. Pisier, De nouvelles caractérisations des ensembles de Sidon, in: Mathematical Analysis and Applications, Part B, Adv. in Math. Suppl. Stud. 7B, Academic Press, 1981, 685-726. | Zbl 0468.43008

[00045] [46] G. Pisier, Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon, in: Topics in Modern Harmonic Analysis II (Torino/Milano, 1982), L. De Michele and F. Ricci (eds.), Ist. Naz. Alta Mat. Francesco Severi, 1983, 911-944.

[00046] [47] A. I. Plotkin, Continuation of Lp-isometries, J. Soviet Math. 2 (1974), 143-165. | Zbl 0283.46018

[00047] [48] S. Ramanujan, Notebooks, Tata Inst. Fundam. Research, 1957.

[00048] [49] S. K. Rao, On sums of sixth powers, J. London Math. Soc. 9 (1934), 172-173. | Zbl 0009.29902

[00049] [50] M. Rosenblatt, A central limit theorem and a strong mixing condition, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 43-47. | Zbl 0070.13804

[00050] [51] H. P. Rosenthal, Sous-espaces de L1. Cours de troisième cycle, Université Paris 6, 1979 (unpublished).

[00051] [52] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203-228. | Zbl 0091.05802

[00052] [53] W. Rudin, Lp-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228.

[00053] [54] I. Z. Ruzsa, On difference sets, Studia Sci. Math. Hungar. 13 (1978), 319-326. | Zbl 0423.10027

[00054] [55] I. Singer, Bases in Banach Spaces II, Springer, 1981. | Zbl 0467.46020

[00055] [56] C. M. Skinner and T. D. Wooley, On equal sums of two powers, J. Reine Angew. Math. 462 (1995), 57-68. | Zbl 0820.11059

[00056] [57] C. L. Stewart and R. Tijdeman, On infinite-difference sets, Canad. J. Math. 31 (1979), 897-910. | Zbl 0394.10030