Derivations with a hereditary domain, II
Villena, A.
Studia Mathematica, Tome 129 (1998), p. 275-291 / Harvested from The Polish Digital Mathematics Library

The nilpotency of the separating subspace of an everywhere defined derivation on a Banach algebra is an intriguing question which remains still unsolved, even for commutative Banach algebras. On the other hand, closability of partially defined derivations on Banach algebras is a fundamental problem motivated by the study of time evolution of quantum systems. We show that the separating subspace S(D) of a Jordan derivation defined on a subalgebra B of a complex Banach algebra A satisfies B[BS(D)]BRadB(A) provided that BAB ⊂ A and dim(RadJ(A)n=1Bn)<, where RadJ(A) and RadB(A) denote the Jacobson and the Baer radicals of A respectively. From this we deduce the closability of partially defined derivations on complex semiprime Banach algebras with appropriate domains. The result applies to several relevant classes of algebras.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216558
@article{bwmeta1.element.bwnjournal-article-smv130i3p275bwm,
     author = {A. Villena},
     title = {Derivations with a hereditary domain, II},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {275-291},
     zbl = {0918.46048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p275bwm}
}
Villena, A. Derivations with a hereditary domain, II. Studia Mathematica, Tome 129 (1998) pp. 275-291. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p275bwm/

[00000] [1] O. Bratteli, Derivations, Dissipations and Group Actions on C*-algebras, Lecture Notes in Math. 1229, Springer, Berlin, 1986. | Zbl 0607.46035

[00001] [2] J. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), 321-324.

[00002] [3] J. Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. 16 (1977), 493-500. | Zbl 0398.46042

[00003] [4] H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183. | Zbl 0391.46037

[00004] [5] H. G. Dales, Convolution algebras on the real line, in: Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. 975, Springer, 1983, 180-209.

[00005] [6] R. S. Doran and J. M. G. Fell, Representations of *-Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Vol. 1, Basic Representation Theory of Groups and Algebras, Academic Press, 1988. | Zbl 0652.46050

[00006] [7] R. V. Garimella, Continuity of derivations on some semiprime Banach algebra, Proc. Amer. Math. Soc. 99 (1987), 289-292. | Zbl 0617.46056

[00007] [8] R. V. Garimella, On nilpotency of the separating ideal of a derivation, ibid. 117 (1993), 167-174. | Zbl 0794.46042

[00008] [9] I. M. Gelfand, D. A. Raikov and G. E. Shilov, Commutative Normed Rings, Chelsea, New York, 1964.

[00009] [10] F. Ghahramani, Homomorphisms and derivations on weighted convolution algebras, J. London Math. Soc. 21 (1980), 149-161. | Zbl 0435.43005

[00010] [11] S. Grabiner, Derivations and automorphisms of Banach algebras of power series, Mem. Amer. Math. Soc. 146 (1974). | Zbl 0295.46074

[00011] [12] I. N. Herstein, Jordan derivations on prime rings, Proc. Amer. Math. Soc. 8 (1957), 1104-1110. | Zbl 0216.07202

[00012] [13] N. P. Jewell and A. M. Sinclair, Epimorphisms and derivations on L1(0,1) are continuous, Bull. London Math. Soc. 8 (1976), 135-139. | Zbl 0324.46048

[00013] [14] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. | Zbl 0179.18103

[00014] [15] R. J. Loy, Continuity of derivations on topological algebras of power series, Bull. Austral. Math. Soc. 1 (1969), 419-424. | Zbl 0177.17601

[00015] [16] M. Mathieu and V. Runde, Derivations mapping into the radical, II, Bull. London Math. Soc. 24 (1992), 485-487. | Zbl 0733.46023

[00016] [17] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. I, Algebras and Banach Algebras, Cambridge Univ. Press, 1994. | Zbl 0809.46052

[00017] [18] G. K. Pedersen, C*-Algebras and Their Automorphism Groups, Academic Press, London, 1979. | Zbl 0416.46043

[00018] [19] V. Runde, Automatic continuity of derivations and epimorphisms, Pacific J. Math. 147 (1991), 365-374. | Zbl 0666.46052

[00019] [20] S. Sakai, Operator Algebras in Dynamical Systems, Cambridge Univ. Cambridge, 1991. | Zbl 0743.46078

[00020] [21] A. M. Sinclair, Automatic Continuity of Linear Operators, London Math. Soc. Lecture Note Ser. 21, Cambridge Univ. Press, 1976. | Zbl 0313.47029

[00021] [22] M. P. Thomas, Primitive ideals and derivations on non-commutative Banach algebras, Pacific J. Math. 159 (1993), 139-152. | Zbl 0739.47014

[00022] [23] A. R. Villena, Continuity of derivations on H*-algebras, Proc. Amer. Math. Soc. 122 (1994), 821-826. | Zbl 0822.46061

[00023] [24] A. R. Villena, Derivations on Jordan-Banach algebras, Studia Math. 118 (1996), 205-229. | Zbl 0855.46030

[00024] [25] A. R. Villena, Essentially defined derivations on semisimple Banach algebras, Proc. Edinburgh Math. Soc. 40 (1997), 175-179. | Zbl 1041.46522

[00025] [26] A. R. Villena, Derivations with a hereditary domain, J. London Math. Soc., to appear. | Zbl 0922.46047