A condition on a family of linear operators is given under which the inhomogeneous Cauchy problem for u"(t)=(A+ B(t))u(t) + f(t) for t ∈ [0,T] has a unique solution, where A is a linear operator satisfying the conditions characterizing infinitesimal generators of cosine families except the density of their domains. The result obtained is applied to the partial differential equation in the space of continuous functions on [0,1].
@article{bwmeta1.element.bwnjournal-article-smv130i3p263bwm, author = {Yuhua Lin}, title = {Time-dependent perturbation theory for abstract evolution equations of second order}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {263-274}, zbl = {0916.47035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p263bwm} }
Lin, Yuhua. Time-dependent perturbation theory for abstract evolution equations of second order. Studia Mathematica, Tome 129 (1998) pp. 263-274. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p263bwm/
[00000] [1] G. Da Prato and E. Sinestrari, Differential operators with non dense domain, Ann. Scuola Norm. Sup. Pisa 14 (1987), 285-344. | Zbl 0652.34069
[00001] [2] J. Kisyński, On cosine operator functions and one-parameter groups of operators, Studia Math. 44 (1972), 93-105. | Zbl 0232.47045
[00002] [3] D. Lutz, On bounded time-dependent perturbation of operator cosine functions, Aequationes Math. 23 (1981), 197-203. | Zbl 0512.34047
[00003] [4] I. Miyadera, S. Oharu and N. Okazawa, Generation theorems of semi-groups of linear operators, Publ. RIMS Kyoto Univ. 8 (1973), 509-555. | Zbl 0262.47030
[00004] [5] H. Oka, Integrated resolvent operators, J. Integral Equations Appl. 7 (1995), 193-232. | Zbl 0846.45005
[00005] [6] H. Serizawa and M. Watanabe, Perturbation for cosine families in Banach spaces, Houston J. Math. 12 (1986), 117-124. | Zbl 0607.47044
[00006] [7] H. Serizawa and M. Watanabe, Time-dependent perturbation for cosine families in Banach spaces, ibid., 579-586. | Zbl 0619.47037
[00007] [8] M. Sova, Cosine operator functions, Rozprawy Mat. 49 (1966).
[00008] [9] N. Tanaka, Quasilinear evolution equations with non-densely defined operators, Differential Integral Equations 9 (1996), 1067-1106. | Zbl 0942.34053