Reverse-Holder classes in the Orlicz spaces setting
Harboure, E. ; Salinas, O. ; Viviani, B.
Studia Mathematica, Tome 129 (1998), p. 245-261 / Harvested from The Polish Digital Mathematics Library

In connection with the Aϕ classes of weights (see [K-T] and [B-K]), we study, in the context of Orlicz spaces, the corresponding reverse-Hölder classes RHϕ. We prove that when ϕ is Δ2 and has lower index greater than one, the class RHϕ coincides with some reverse-Hölder class RHq,q>1. For more general ϕ we still get RHϕA=q>1RHq although the intersection of all these RHϕ gives a proper subset of q>1RHq.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216556
@article{bwmeta1.element.bwnjournal-article-smv130i3p245bwm,
     author = {E. Harboure and O. Salinas and B. Viviani},
     title = {Reverse-Holder classes in the Orlicz spaces setting},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {245-261},
     zbl = {0905.42012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p245bwm}
}
Harboure, E.; Salinas, O.; Viviani, B. Reverse-Holder classes in the Orlicz spaces setting. Studia Mathematica, Tome 129 (1998) pp. 245-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p245bwm/

[00000] [B-K] S. Bloom and R. Kerman, Weighted Orlicz space integral inequalities for the Hardy-Littlewood maximal operator, Studia Math. 110 (1994), 149-167. | Zbl 0813.42014

[00001] [CU-N] D. Cruz-Uribe, and C. J. Neugebauer, The structure of the reverse-Hölder classes, Trans. Amer. Math. Soc. 345 (1995), 2941-2960. | Zbl 0851.42016

[00002] [C-F] R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250. | Zbl 0291.44007

[00003] [F] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125-158. | Zbl 0751.46023

[00004] [K-K] V. Kokilashvili and M. Krbec, Weighted Inequalities in Lorentz and Orlicz Spaces, World Sci., Singapore, 1991. | Zbl 0751.46021

[00005] [K-T] R. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy maximal function, Studia Math. 71 (1982), 278-284. | Zbl 0517.42030

[00006] [S-T] J. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1281, Springer, 1989.