Let D be a hyperbolic convex domain in a complex Banach space. Let the mapping F ∈ Hol(D,D) be bounded on each subset strictly inside D, and have a nonempty fixed point set ℱ in D. We consider several methods for constructing retractions onto ℱ under local assumptions of ergodic type. Furthermore, we study the asymptotic behavior of the Cesàro averages of one-parameter semigroups generated by holomorphic mappings.
@article{bwmeta1.element.bwnjournal-article-smv130i3p231bwm, author = {Simeon Reich and David Shoikhet}, title = {Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {231-244}, zbl = {0918.46046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p231bwm} }
Reich, Simeon; Shoikhet, David. Averages of holomorphic mappings and holomorphic retractions on convex hyperbolic domains. Studia Mathematica, Tome 129 (1998) pp. 231-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i3p231bwm/
[00000] [1] M. Abate and J.-P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains, Proc. Amer. Math. Soc. 112 (1991), 503-512. | Zbl 0724.32012
[00001] [2] M. Abd-Alla, L'ensemble des points fixes d'une application holomorphe dans un produit fini de boules-unités d'espaces de Hilbert et une sous-variété banachique complexe, Ann. Mat. Pura Appl. (4) 153 (1988), 63-75.
[00002] [3] T. Y. Azizov, V. Khatskevich, and D. Shoikhet, On the number of fixed points of a holomorphism, Sibirsk. Mat. Zh. 31 (1990), no. 6, 192-195 (in Russian).
[00003] [4] H. Cartan, Sur les rétractions d'une variété, C. R. Acad. Sci. Paris 303 (1986), 715-716. | Zbl 0609.32021
[00004] [5] G.-N. Chen, Iteration for holomorphic maps of the open unit ball and the generalized upper half-plane of , J. Math. Anal. Appl. 98 (1984), 305-313.
[00005] [6] Do Duc Thai, The fixed points of holomorphic maps on a convex domain, Ann. Polon. Math. 56 (1992), 143-148. | Zbl 0761.32012
[00006] [7] C. J. Earle and R. S. Hamilton, A fixed-point theorem for holomorphic mappings, in: Proc. Sympos. Pure Math. 16, Amer. Math. Soc., Providence, R.I., 1970, 61-65. | Zbl 0205.14702
[00007] [8] G. Fischer, Complex Analytic Geometry, Lecture Notes in Math. 538, Springer, Berlin, 1976. | Zbl 0343.32002
[00008] [9] T. Franzoni and E. Vesentini, Holomorphic Maps and Invariant Distances, North-Holland, Amsterdam, 1980. | Zbl 0447.46040
[00009] [10] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
[00010] [11] I. Gohberg and A. Markus, Characteristic properties of a pole of the resolvent of a linear closed operator, Uchenye Zapiski Bel'tskogo Gosped. 5 (1960), 71-76 (in Russian).
[00011] [12] L. F. Heath and T. J. Suffridge, Holomorphic retracts in complex n-space, Illinois J. Math. 25 (1981), 125-135. | Zbl 0463.32008
[00012] [13] M. Hervé, Analyticity in Infinite Dimensional Spaces, de Gruyter, Berlin, 1989.
[00013] [14] J. M. Isidro and L. L. Stacho, z Holomorphic Automorphism Groups in Banach Spaces: An Elementary Introduction, North-Holland, Amsterdam, 1984. | Zbl 0561.46022
[00014] [15] V. Khatskevich, S. Reich, and D. Shoikhet, Ergodic type theorems for nonlinear semigroups with holomorphic generators, in: Recent Developments in Evolution Equations, Pitman Res. Notes Math. 324, Longman, 1995, 191-200. | Zbl 0863.47053
[00015] [16] V. Khatskevich, S. Reich, and D. Shoikhet, Asymptotic behavior of solutions to evolution equations and the construction of holomorphic retractions, Math. Nachr. 189 (1998), 171-178. | Zbl 0901.46036
[00016] [17] V. Khatskevich and D. Shoikhet, Fixed points of analytic operators in a Banach space and applications, Sibirsk. Mat. Zh. 25 (1984), no. 1, 189-200 (in Russian). | Zbl 0548.47030
[00017] [18] V. Khatskevich and D. Shoikhet, Differentiable Operators and Nonlinear Equations, Birkhäuser, Basel, 1994.
[00018] [19] J. J. Koliha, Some convergence theorems in Banach algebras, Pacific J. Math. 52, (1974), 467-473. | Zbl 0265.46049
[00019] [20] M. A. Krasnosel'skiĭ and P. P. Zabreĭko, Geometrical Methods of Nonlinear Analysis, Springer, Berlin, 1984.
[00020] [21] Y. Kubota, Iteration of holomorphic maps of the unit ball into itself, Proc. Amer. Math. Soc. 88 (1983) 476-480. | Zbl 0518.32016
[00021] [22] T. Kuczumow and A. Stachura, Iterates of holomorphic and -nonexpansive mappings in convex domains in , Adv. Math. 81 (1990), 90-98. | Zbl 0726.32016
[00022] [23] K. B. Laursen and M. Mbekhta, Operators with finite chain length and the ergodic theorem, Proc. Amer. Math. Soc. 123 (1995), 3443-3448. | Zbl 0849.47008
[00023] [24] L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), 257-261. | Zbl 0509.32015
[00024] [25] Yu. Lyubich and J. Zemánek, Precompactness in the uniform ergodic theory, Studia Math. 112 (1994), 89-97. | Zbl 0817.47014
[00025] [26] B. D. MacCluer, Iterates of holomorphic self-maps of the unit ball in , Michigan Math. J. 30 (1983), 97-106.
[00026] [27] P. Mazet, Les points fixes d'une application holomorphe d'un domaine borné dans lui-même admettent une base de voisinages convexes stable, C. R. Acad. Sci. Paris 314 (1992), 197-199. | Zbl 0749.32017
[00027] [28] P. Mazet et J.-P. Vigué, Points fixes d'une application holomorphe d'un domaine borné dans lui-même, Acta Math. 166 (1991), 1-26. | Zbl 0733.32020
[00028] [29] P. Mazet et J.-P. Vigué, Convexité de la distance de Carathéodory et points fixes d'applications holomorphes, Bull. Sci. Math. 116 (1992), 285-305.
[00029] [30] P. R. Mercer, Complex geodesics and iterates of holomorphic maps on convex domains in , Trans. Amer. Math. Soc. 338 (1993), 201-211. | Zbl 0790.32026
[00030] [31] S. Reich and D. Shoikhet, Metric domains, holomorphic mappings and nonlinear semigroups, Technion Preprint Series No. MT-1018, 1997.
[00031] [32] W. Rudin, The fixed-point set of some holomorphic maps, Bull. Malaysian Math. Soc. 1 (1978), 25-28. | Zbl 0413.32012
[00032] [33] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.
[00033] [34] D. Shoikhet, Some properties of Fredholm mappings in Banach analytic manifolds, Integral Equations Operator Theory 16 (1993), 430-451. | Zbl 0789.58009
[00034] [35] T. J. Suffridge, Common fixed points of commuting holomorphic maps of the hyperball, Michigan Math. J. 21 (1974), 309-314. | Zbl 0333.47026
[00035] [36] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, Wiley, New York, 1980. | Zbl 0501.46003
[00036] [37] E. Vesentini, Complex geodesics and holomorphic maps, Sympos. Math. 26 (1982), 211-230. | Zbl 0506.32008
[00037] [38] E. Vesentini, Su un teorema di Wolff e Denjoy, Rend. Sem. Mat. Fis. Milano 53 (1983), 17-25.
[00038] [39] E. Vesentini, Iterates of holomorphic mappings, Uspekhi Mat. Nauk 40 (1985), no. 4, 13-16 (in Russian).
[00039] [40] J.-P. Vigué, Points fixes d'applications holomorphes dans un produit fini de boules-unités d'espaces de Hilbert, Ann. Mat. Pura Appl. 137 (1984), 245-256. | Zbl 0567.46022
[00040] [41] J.-P. Vigué, Points fixes d’applications holomorphes dans un domaine borné convexe de , Trans. Amer. Math. Soc. 289 (1985), 345-353. | Zbl 0589.32043
[00041] [42] J.-P. Vigué, Sur les points fixes d'applications holomorphes, C. R. Acad. Sci. Paris 303 (1986), 927-930. | Zbl 0607.32016
[00042] [43] J.-P. Vigué, Fixed points of holomorphic mappings in a bounded convex domain in , in: Proc. Sympos. Pure Math.