Let be a minimal non-periodic flow which is either symbolic or strictly ergodic. Any topological extension of is Borel isomorphic to an almost 1-1 extension of . Moreover, this isomorphism preserves the affine-topological structure of the invariant measures. The above extends a theorem of Furstenberg-Weiss (1989). As an application we prove that any measure-preserving transformation which admits infinitely many rational eigenvalues is measure-theoretically isomorphic to a strictly ergodic toeplitz flow.
@article{bwmeta1.element.bwnjournal-article-smv130i2p149bwm, author = {T. Downarowicz and Y. Lacroix}, title = {Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {149-170}, zbl = {0916.28013}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i2p149bwm} }
Downarowicz, T.; Lacroix, Y. Almost 1-1 extensions of Furstenberg-Weiss type and applications to Toeplitz flows. Studia Mathematica, Tome 129 (1998) pp. 149-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i2p149bwm/
[00000] [A] J. Auslander, Minimal Flows and Their Extensions, North-Holland Math. Stud. 153, North-Holland, 1988. | Zbl 0654.54027
[00001] [B-G-K] F. Blanchard, E. Glasner and J. Kwiatkowski, Minimal self-joinings and positive topological entropy, Monatsh. Math. 120 (1995), 205-222. | Zbl 0859.54027
[00002] [B-K1] W. Bułatek and J. Kwiatkowski, The topological centralizers of Toeplitz flows and their -extensions, Publ. Math. 34 (1990), 45-65. | Zbl 0731.54027
[00003] [B-K2] W. Bułatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math. 103 (1992), 133-142. | Zbl 0816.58028
[00004] [D-G-S] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1976. | Zbl 0328.28008
[00005] [D-K] M. Denker and M. Keane, Almost topological dynamical systems, Israel J. Math. 34 (1979), 139-160. | Zbl 0441.28008
[00006] [D1] T. Downarowicz, A minimal 0-1 subshift with noncompact set of invariant measures, Probab. Theory Related Fields 79 (1988), 29-35 | Zbl 0637.28014
[00007] [D2] T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), 241-256. | Zbl 0746.58047
[00008] [D3] T. Downarowicz, The Royal Couple conceals their mutual relationship - A noncoalescent Toeplitz flow, ibid. 97 (1997), 239-252. | Zbl 0893.54032
[00009] [D-1] T. Downarowicz and A. Iwanik, Quasi-uniform convergence in compact dynamical systems, Studia Math. 89 (1998), 11-25.
[00010] [D-K-L] T. Downarowicz, J. Kwiatkowski and Y. Lacroix, A criterion for Toeplitz flows to be topologically isomorphic and applications, Colloq. Math. 68 (1995), 219-228. | Zbl 0820.28009
[00011] [D-L] T. Downarowicz and Y. Lacroix, A non-regular Toeplitz flow with preset pure point spectrum, Studia Math. 120 (1996), 235-246. | Zbl 0888.28009
[00012] [E] E. Eberlein, Toeplitzfolgen und Gruppentranslationen, Thesis, Erlangen, 1970.
[00013] [F-K-M] S. Férenczi, J. Kwiatkowski and C. Mauduit, A density theorem for (multiplicity, rank) pairs, J. Anal. Math. 65 (1995), 45-75. | Zbl 0833.28010
[00014] [F-W] H. Furstenberg and B. Weiss, On almost 1-1 extensions, Israel J. Math. 65 (1989), 311-322. | Zbl 0676.28010
[00015] [Ga-H] M. Garsia and G. A. Hedlund, The structure of minimal sets, Bull. Amer. Math. Soc. 54 (1948), 954-964. | Zbl 0032.36002
[00016] [G-H] W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36, 1995. | Zbl 0067.15204
[00017] [H-R] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Vol. I, Springer, Berlin, 1963.
[00018] [I] A. Iwanik, Toeplitz flows with pure point spectrum, Studia Math. 118 (1996), 27-35. | Zbl 0888.28008
[00019] [I-L] A. Iwanik and Y. Lacroix, Some constructions of strictly ergodic non-regular Toeplitz flows, ibid. 110 (1994), 191-203 | Zbl 0810.28009
[00020] [J-K] K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131. | Zbl 0195.52703
[00021] [K-L] J. Kwiatkowski and Y. Lacroix, Rank and weak closure theorem, II, preprint. | Zbl 1198.37009
[00022] [L] M. Lemańczyk, Toeplitz -extensions, Ann. Inst. H. Poincaré 24 (1998), 1-43.
[00023] [M-P] N. Markley and M. E. Paul, Almost automorphic symbolic minimal sets without unique ergodicity, Israel J. Math. 34 (1979), 259-272. | Zbl 0463.54039
[00024] [O] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136. | Zbl 0046.11504
[00025] [W] B. Weiss, Strictly ergodic models for dynamical systems, ibid. 13 (1985), 143-146. | Zbl 0615.28012
[00026] [Wi] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67 (1984), 95-107. | Zbl 0584.28007