On Denjoy-Dunford and Denjoy-Pettis integrals
Gámez, José ; Mendoza, José
Studia Mathematica, Tome 129 (1998), p. 115-133 / Harvested from The Polish Digital Mathematics Library

The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function f:[a,b]c0 which is not Pettis integrable on any subinterval in [a,b], while ʃJf belongs to c0 for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord and Denjoy-Pettis integrals are studied.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216547
@article{bwmeta1.element.bwnjournal-article-smv130i2p115bwm,
     author = {Jos\'e G\'amez and Jos\'e Mendoza},
     title = {On Denjoy-Dunford and Denjoy-Pettis integrals},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {115-133},
     zbl = {0971.28009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i2p115bwm}
}
Gámez, José; Mendoza, José. On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Mathematica, Tome 129 (1998) pp. 115-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i2p115bwm/

[00000] [1] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.

[00001] [2] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.

[00002] [3] N. Dunford and J. T. Schwartz, Linear Operators, part I, Interscience, New York, 1958.

[00003] [4] R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91. | Zbl 0681.28006

[00004] [5] R. A. Gordon, The integrals of Lebesque, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., Providence, 1994. | Zbl 0807.26004

[00005] [6] J. Lindenstrauss and L.Tzafriri, Classical Banach Spaces I, Springer, 1977. | Zbl 0362.46013

[00006] [7] S. Saks, Theory of the Integral, 2nd revised ed., Hafner, New York, 1937.