The two main results of this paper are the following: (a) If X is a Banach space and f : [a,b] → X is a function such that x*f is Denjoy integrable for all x* ∈ X*, then f is Denjoy-Dunford integrable, and (b) There exists a Dunford integrable function which is not Pettis integrable on any subinterval in [a,b], while belongs to for every subinterval J in [a,b]. These results provide answers to two open problems left by R. A. Gordon in [4]. Some other questions in connection with Denjoy-Dundord and Denjoy-Pettis integrals are studied.
@article{bwmeta1.element.bwnjournal-article-smv130i2p115bwm, author = {Jos\'e G\'amez and Jos\'e Mendoza}, title = {On Denjoy-Dunford and Denjoy-Pettis integrals}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {115-133}, zbl = {0971.28009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i2p115bwm} }
Gámez, José; Mendoza, José. On Denjoy-Dunford and Denjoy-Pettis integrals. Studia Mathematica, Tome 129 (1998) pp. 115-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i2p115bwm/
[00000] [1] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, 1984.
[00001] [2] J. Diestel and J. J. Uhl, Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
[00002] [3] N. Dunford and J. T. Schwartz, Linear Operators, part I, Interscience, New York, 1958.
[00003] [4] R. A. Gordon, The Denjoy extension of the Bochner, Pettis, and Dunford integrals, Studia Math. 92 (1989), 73-91. | Zbl 0681.28006
[00004] [5] R. A. Gordon, The integrals of Lebesque, Denjoy, Perron and Henstock, Grad. Stud. Math. 4, Amer. Math. Soc., Providence, 1994. | Zbl 0807.26004
[00005] [6] J. Lindenstrauss and L.Tzafriri, Classical Banach Spaces I, Springer, 1977. | Zbl 0362.46013
[00006] [7] S. Saks, Theory of the Integral, 2nd revised ed., Hafner, New York, 1937.