α-Equivalence
Koh Park, Kyewon
Studia Mathematica, Tome 129 (1998), p. 9-21 / Harvested from The Polish Digital Mathematics Library

We define the α - relations between discrete systems and between continuous systems. We show that it is an equivalence relation. α- Equivalence vs. even α-equivalence is analogous to Kakutani equivalence vs. even Kakutani equivalence.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216544
@article{bwmeta1.element.bwnjournal-article-smv130i1p9bwm,
     author = {Kyewon Koh Park},
     title = {$\alpha$-Equivalence},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {9-21},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p9bwm}
}
Koh Park, Kyewon. α-Equivalence. Studia Mathematica, Tome 129 (1998) pp. 9-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p9bwm/

[00000] [Am] W. Ambrose, Representation of ergodic flows, Ann. of Math. 42 (1941), 723-739 | Zbl 0025.26901

[00001] [dJFR] A. del Junco, A. Fieldsteel and D. Rudolph, α - Equivalence: refinement of Kakutani equivalence, Ergodic Theory Dynam. Systems 14 (1994), 69-102.

[00002] [Ka] S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635-641. | Zbl 0060.27406

[00003] [KR] K. Kamayer and D. Rudolph, Restricted orbit equivalence for actions of discrete amenable groups, preprint.

[00004] [ORW] D. S. Ornstein, D. Rudolph and B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 262 (1982) | Zbl 0504.28019

[00005] [Pa1] K. K. Park, An induced mixing flow under 1 and α, J. Korean Math. Anal. Appl. 195 ( 1995), 335-353.

[00006] [Pa2] K. K. Park, Even Kakutani equivalence via α- and β-equivalences, J. Math. Anal. Appl. 195 (1995), 335-353.

[00007] [Pa3] K. K. Park, A short proof of even α-equivalence, in: Algorithms, Fractals, and Dynamics (Okyama/Kyoto, 1992), Plenum, New York, 1995, 193-199.

[00008] [Ru1] D. Rudolph, A two-valued step coding for ergodic flows, Math. Z. 150 (1976), 201-220. | Zbl 0325.28019

[00009] [Ru2] D. Rudolph, A restricted orbit equivalence, Mem. Amer. Math. Soc. 323 (1985).

[00010] [Sh] P. Shields, The Theory of Bernoulli Shifts, Univ. of Chicago Press, 1973. | Zbl 0308.28011