We define the α - relations between discrete systems and between continuous systems. We show that it is an equivalence relation. α- Equivalence vs. even α-equivalence is analogous to Kakutani equivalence vs. even Kakutani equivalence.
@article{bwmeta1.element.bwnjournal-article-smv130i1p9bwm, author = {Kyewon Koh Park}, title = {$\alpha$-Equivalence}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {9-21}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p9bwm} }
Koh Park, Kyewon. α-Equivalence. Studia Mathematica, Tome 129 (1998) pp. 9-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p9bwm/
[00000] [Am] W. Ambrose, Representation of ergodic flows, Ann. of Math. 42 (1941), 723-739 | Zbl 0025.26901
[00001] [dJFR] A. del Junco, A. Fieldsteel and D. Rudolph, α - Equivalence: refinement of Kakutani equivalence, Ergodic Theory Dynam. Systems 14 (1994), 69-102.
[00002] [Ka] S. Kakutani, Induced measure preserving transformations, Proc. Imp. Acad. Tokyo 19 (1943), 635-641. | Zbl 0060.27406
[00003] [KR] K. Kamayer and D. Rudolph, Restricted orbit equivalence for actions of discrete amenable groups, preprint.
[00004] [ORW] D. S. Ornstein, D. Rudolph and B. Weiss, Equivalence of measure preserving transformations, Mem. Amer. Math. Soc. 262 (1982) | Zbl 0504.28019
[00005] [Pa1] K. K. Park, An induced mixing flow under 1 and α, J. Korean Math. Anal. Appl. 195 ( 1995), 335-353.
[00006] [Pa2] K. K. Park, Even Kakutani equivalence via α- and β-equivalences, J. Math. Anal. Appl. 195 (1995), 335-353.
[00007] [Pa3] K. K. Park, A short proof of even α-equivalence, in: Algorithms, Fractals, and Dynamics (Okyama/Kyoto, 1992), Plenum, New York, 1995, 193-199.
[00008] [Ru1] D. Rudolph, A two-valued step coding for ergodic flows, Math. Z. 150 (1976), 201-220. | Zbl 0325.28019
[00009] [Ru2] D. Rudolph, A restricted orbit equivalence, Mem. Amer. Math. Soc. 323 (1985).
[00010] [Sh] P. Shields, The Theory of Bernoulli Shifts, Univ. of Chicago Press, 1973. | Zbl 0308.28011