For every closed subset C in the dual space of the Heisenberg group we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra and we show that in general for two closed subsets of the product of and is different from .
@article{bwmeta1.element.bwnjournal-article-smv130i1p77bwm, author = {J. Ludwig}, title = {Hull-minimal ideals in the Schwartz algebra of the Heisenberg group}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {77-98}, zbl = {0942.46032}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p77bwm} }
Ludwig, J. Hull-minimal ideals in the Schwartz algebra of the Heisenberg group. Studia Mathematica, Tome 129 (1998) pp. 77-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p77bwm/
[00000] [BD] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973. | Zbl 0271.46039
[00001] [CG] L. Corwin and F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications Cambridge Univ. Press, 1990.
[00002] [Di1] J. Dixmier, Les C*-algèbres et leurs représentations, Gauthier-Villars, 1969.
[00003] [Di2] J. Dixmier, Opérateurs de rang fini dans les représentations unitaires, Inst. Hautes Etudes Sci. Publ. Math. 6 (1960), 305-317. | Zbl 0100.32303
[00004] [FO] G. Folland, Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989.
[00005] [FS] G. Folland and E. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, 1982. | Zbl 0508.42025
[00006] [Hu] A. Hulanicki, A functional calculus for Rockland oerators on nilpotent Lie groups, Studia Math. 78 (1984), 253-266. | Zbl 0595.43007
[00007] [Lu1] J. Ludwig, Polynomial growth and ideals in group algebras, Manuscripta Math. 30 (1980), 215-221. | Zbl 0417.43005
[00008] [Lu2] J. Ludwig, Minimal C*-dense ideals and algebraically irreducible representations of the Schwartz-algebra of a nilpotent Lie group, in: Harmonic Analysis, Springer, 1987, 209-217.
[00009] [Lu3] J. Ludwig, Topologically irreducible of the Schwartz-algebra a nilpotent Lie group, Arch. Math. (Basel) 54 (1990), 284-292. | Zbl 0664.43002
[00010] [LM] J. Ludwig et C. Molitor-Braun, L'algèbre de Schwartz d'un groupe de Lie nilpotent, Travaux de Mathématiques Publications du C.U. Luxembourg, 1996.
[00011] [LRS] J. Ludwig, G. Rosenbaum and J. Samuel, The elements of bounded trace in the C*-algebra of a nilpotent Lie group, Invent. Math. 83 (1986), 167-190. | Zbl 0587.22003
[00012] [LZ] J. Ludwig and H. Zahir, On the nilpotent Fourier transform, Lett. math. Phys. 30, (1994), 23-34. | Zbl 0798.22004
[00013] [Rei] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Oxford Math. Monographs, Oxford Univ. Press, 1968. | Zbl 0165.15601