On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space
Drissi, Driss
Studia Mathematica, Tome 129 (1998), p. 1-7 / Harvested from The Polish Digital Mathematics Library

Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216538
@article{bwmeta1.element.bwnjournal-article-smv130i1p1bwm,
     author = {Driss Drissi},
     title = {On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {1-7},
     zbl = {0932.47027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p1bwm}
}
Drissi, Driss. On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space. Studia Mathematica, Tome 129 (1998) pp. 1-7. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p1bwm/

[00000] [1] B. Aupetit and D. Drissi, Some spectral inequalities involving generalized scalar operators, Studia Math. 109 (1994), 51-66. | Zbl 0829.47002

[00001] [2] B. Aupetit and D. Drissi, Local spectrum theory and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579)

[00002] [3] F. F. Bonsall and J. Duncan, Numerical Ranges I and II, London Math. Soc. Lecture Note Ser. 2 and 10, Cambridge Univ. Press, 1971 and 1973.

[00003] [4] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. | Zbl 67.0407.02

[00004] [5] E. Hille, On the theory of characters of groups and semigroups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60. | Zbl 0061.25305

[00005] [6] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957. | Zbl 0078.10004

[00006] [7] G. Lumer and R. S. Phillips, Dissipative operators in Banach space, Pacific J. Math. 11 (1961), 679-698. | Zbl 0101.09503

[00007] [8] J. Zemánek, On the Gelfand-Hille theorems, in: Banach Center Publ. 30, Inst. of Math., Polish Acad. Sci., 1994, 369-385. | Zbl 0822.47005