Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.
@article{bwmeta1.element.bwnjournal-article-smv130i1p1bwm, author = {Driss Drissi}, title = {On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {1-7}, zbl = {0932.47027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p1bwm} }
Drissi, Driss. On a generalization of Lumer-Phillips' theorem for dissipative operators in a Banach space. Studia Mathematica, Tome 129 (1998) pp. 1-7. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv130i1p1bwm/
[00000] [1] B. Aupetit and D. Drissi, Some spectral inequalities involving generalized scalar operators, Studia Math. 109 (1994), 51-66. | Zbl 0829.47002
[00001] [2] B. Aupetit and D. Drissi, Local spectrum theory and subharmonicity, Proc. Edinburgh Math. Soc. 39 (1996), 571-579)
[00002] [3] F. F. Bonsall and J. Duncan, Numerical Ranges I and II, London Math. Soc. Lecture Note Ser. 2 and 10, Cambridge Univ. Press, 1971 and 1973.
[00003] [4] I. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Mat. Sb. 9 (1941), 49-50. | Zbl 67.0407.02
[00004] [5] E. Hille, On the theory of characters of groups and semigroups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60. | Zbl 0061.25305
[00005] [6] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc., Providence, 1957. | Zbl 0078.10004
[00006] [7] G. Lumer and R. S. Phillips, Dissipative operators in Banach space, Pacific J. Math. 11 (1961), 679-698. | Zbl 0101.09503
[00007] [8] J. Zemánek, On the Gelfand-Hille theorems, in: Banach Center Publ. 30, Inst. of Math., Polish Acad. Sci., 1994, 369-385. | Zbl 0822.47005