An explicit representation of the n-fold symmetric tensor product (equipped with a natural topology τ such as the projective, injective or inductive one) of the finite direct sum of locally convex spaces is presented. The formula for gives a direct proof of a recent result of Díaz and Dineen (and generalizes it to other topologies τ) that the n-fold projective symmetric and the n-fold projective “full” tensor product of a locally convex space E are isomorphic if E is isomorphic to its square .
@article{bwmeta1.element.bwnjournal-article-smv129i3p285bwm, author = {Jos\'e Ansemil and Klaus Floret}, title = {The symmetric tensor product of a direct sum of locally convex spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {285-295}, zbl = {0931.46005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i3p285bwm} }
Ansemil, José; Floret, Klaus. The symmetric tensor product of a direct sum of locally convex spaces. Studia Mathematica, Tome 129 (1998) pp. 285-295. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i3p285bwm/
[00000] [1] R. Alencar and K. Floret, Weak-strong continuity of multilinear mappings and the Pełczyński-Pitt theorem, J. Math. Anal. Appl. 206 (1997), 532-546. | Zbl 0887.46004
[00001] [2] A. Arias and J. Farmer, On the structure of tensor products of -spaces, Pacific J. Math. 175 (1996), 13-37. | Zbl 0890.46016
[00002] [3] F. Blasco, Complementación, casinormabilidad y tonelación en espacios de polinomios, doct. thesis, Univ. Compl. Madrid, 1996.
[00003] [4] F. Blasco, Complementation in spaces of symmetric tensor products and polynomials, Studia Math. 123 (1997) 165-173. | Zbl 0870.46028
[00004] [5] J. Bonet and A. Peris, On the injective tensor product of quasinormable spaces, Results in Math. 20 (1991), 431-443.
[00005] [6] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Math. Stud. 176, North-Holland, 1993. | Zbl 0774.46018
[00006] [7] A. Defant and M. Maestre, Property (BB) and holomorphic functions on Fréchet-Montel spaces, Math. Proc. Cambridge Philos. Soc. 115 (1993), 305-313.
[00007] [8] J. C. Díaz and S. Dineen, Polynomials on stable spaces, Ark. Mat., to appear. | Zbl 0929.46036
[00008] [9] S. Dineen, Complex Analysis on Infinite Dimensional Spaces, in preparation.
[00009] [10] K. Floret, Some aspects of the theory of locally convex inductive limits, in: Functional Analysis: Surveys and Recent Results II, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland, 1980, 205-237.
[00010] [11] K. Floret, Tensor topologies and equicontinuity, Note Mat. 5 (1985), 37-49. | Zbl 0654.46061
[00011] [12] W. T. Gowers, A solution to the Schroeder-Bernstein problem for Banach spaces, Bull. London Math. Soc. 28 (1996), 297-304. | Zbl 0863.46006
[00012] [13] W. Greub, Multilinear Algebra, Universitext, Springer, 1978.
[00013] [14] A. Grothendieck, Produits tensoriels et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[00014] [15] H. Jarchow, Locally Convex Spaces, Teubner, 1981. | Zbl 0466.46001
[00015] [16] R. Ryan, Application of topological tensor products to infinite dimensional holomorphy, doct. thesis, Trinity Coll. Dublin, 1980.
[00016] [17] L. Schwartz, Théorie des distributions à valeurs vectorielles. I et II, Ann. Inst. Fourier (Grenoble) 7 (1957), 1-141, and 8 (1958), 1-209. | Zbl 0089.09601