Let A be a semisimple commutative regular tauberian Banach algebra with spectrum . In this paper, we study the norm spectra of elements of and present some applications. In particular, we characterize the discreteness of in terms of norm spectra. The algebra A is said to have property (S) if, for all , φ has a nonempty norm spectrum. For a locally compact group G, let denote the C*-algebra generated by left translation operators on and denote the discrete group G. We prove that the Fourier algebra has property (S) iff the canonical trace on is faithful iff . This provides an answer to the isomorphism problem of the two C*-algebras and generalizes the so-called “uniqueness theorem” on the group algebra of a locally compact abelian group G. We also prove that is amenable iff G is amenable and the Figà-Talamanca-Herz algebra has property (S) for all p.
@article{bwmeta1.element.bwnjournal-article-smv129i3p207bwm, author = {Zhiguo Hu}, title = {Spectrum of commutative Banach algebras and isomorphism of C*-algebras related to locally compact groups}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {207-223}, zbl = {0904.22003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i3p207bwm} }
Hu, Zhiguo. Spectrum of commutative Banach algebras and isomorphism of C*-algebras related to locally compact groups. Studia Mathematica, Tome 129 (1998) pp. 207-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i3p207bwm/
[00000] [1] E. Bédos, On the C*-algebra generated by the left translation of a locally compact group, Proc. Amer. Math. Soc. 120 (1994), 603-608. | Zbl 0806.22004
[00001] [2] M. Bekka, E. Kaniuth, A. T. Lau and G. Schlichting, On C*-algebras associated with locally compact groups, ibid. 124 (1996), 3151-3158. | Zbl 0861.43002
[00002] [3] M. Bekka, A. T. Lau and G. Schlichting, On invariant subalgebras of the Fourier-Stieljes algebra of a locally compact group, Math. Ann. 294 (1992), 513-522. | Zbl 0787.22005
[00003] [4] M. Bekka and A. Valette, On duals of Lie groups made discrete, J. Reine Angew. Math. 439 (1993), 1-10.
[00004] [5] J. J. Benedetto, Spectral Synthesis, Academic Press, New York, 1975. | Zbl 0314.43011
[00005] [6] C. Chou, Almost periodic operators in VN(G), Trans. Amer. Math. Soc. 317 (1990), 229-253. | Zbl 0694.43007
[00006] [7] C. Chou, A. T. Lau and J. Rosenblatt, Approximation of compact operators by sums of translations, Illinois J. Math. 29 (1985), 340-350. | Zbl 0546.22007
[00007] [8] M. G. Cowling and J. J. F. Fournier, Inclusions and noninclusions of spaces of convolution operators, Trans. Amer. Math. Soc. 221 (1976), 59-95. | Zbl 0331.43007
[00008] [9] C. De Vito, Characterizations of those ideals in which can be synthesized, Math. Ann. 203 (1973), 171-173.
[00009] [10] V. G. Drinfel'd, Finitely additive measures on S² and S³, invariant with respect to rotations, Functional Anal. Appl. 18 (1984), 245-246.
[00010] [11] J. Duncan and S. A. R. Husseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sec. A 84 (1979), 309-325. | Zbl 0427.46028
[00011] [12] C. F. Dunkl and D. E. Ramirez, C*-algebras generated by Fourier-Stieltjes transformations, Trans. Amer. Math. Soc. 164 (1972), 435-441. | Zbl 0211.15903
[00012] [13] C. F. Dunkl and D. E. Ramirez, Weakly almost periodic functionals on the Fourier algebra, ibid. 185 (1973), 501-514. | Zbl 0271.43009
[00013] [14] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. | Zbl 0169.46403
[00014] [15] B. Forrest, Arens regularity and discrete groups, Pacific J. Math. 151 (1991), 217-227. | Zbl 0746.43002
[00015] [16] E. E. Granirer, A characterisation of discreteness for locally compact groups in terms of the Banach algebras , Proc. Amer. Math. Soc. 54 (1976), 189-192. | Zbl 0317.43010
[00016] [17] E. E. Granirer, On some spaces of linear functionals on the algebras for locally compact groups, Colloq. Math. 52 (1987), 119-132. | Zbl 0649.43004
[00017] [18] E. E. Granirer, On convolution operators which are far from being convolution by a bounded measure. Expository memoir, C. R. Math. Rep. Acad. Sci. Canada 13 (1991), 187-204; corrigendum: ibid. 14 (1992), 118. | Zbl 0791.43003
[00018] [19] E. E. Granirer, On convolution operators with small support which are far from being convolution by a bounded measure, Colloq. Math. 67 (1994), 33-60; erratum: ibid. 69 (1995), 155. | Zbl 0841.43008
[00019] [20] E. E. Granirer, On the set of topologically invariant means on an algebra of convolution operators on , Proc. Amer. Math. Soc. 124 (1996), 3399-3406. | Zbl 0853.43007
[00020] [21] F. Greenleaf, Invariant Means of Topological Groups and Their Applications, Van Nostrand Math. Stud. 16, Van Nostrand, New York, 1969. | Zbl 0174.19001
[00021] [22] C. Herz, The theory of p-spaces with an application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. | Zbl 0216.15606
[00022] [23] C. Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (3) (1973), 91-123. | Zbl 0257.43007
[00023] [24] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vols. I, II, Springer, New York, 1970. | Zbl 0213.40103
[00024] [25] Y. Katznelson, An Introduction to Harmonic Analysis, Dover Publ., New York, 1976.
[00025] [26] A. T. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39-59. | Zbl 0436.43007
[00026] [27] A. T. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, ibid. 267 (1981), 53-63. | Zbl 0489.43006
[00027] [28] A. T. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30. | Zbl 0788.22006
[00028] [29] A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, R.I., 1988.
[00029] [30] J. P. Pier, Amenable Locally Compact Groups, Wiley, New York, 1984. | Zbl 0597.43001
[00030] [31] P. F. Renaud, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291. | Zbl 0226.46065
[00031] [32] A. Ülger, Some results about the spectrum of commutative Banach algebras under the weak topology and applications, Monatsh. Math. 121 (1996), 353-379. | Zbl 0851.46036
[00032] [33] G. Zeller-Meier, Représentations fidèles des produits croisés, C. R. Acad. Sci. Paris Sér. A 264 (1967), 679-682. | Zbl 0152.13302