We transform the concept of p-summing operators, 1≤ p < ∞, to the more general setting of nonlinear Banach space operators. For 1-summing operators on B(Σ,X)-spaces having weak integral representations we generalize the Grothendieck-Pietsch domination principle. This is applied for the characterization of 1-summing Hammerstein operators on C(S,X)-spaces. For p-summing Hammerstein operators we derive the existence of control measures and p-summing extensions to B(Σ,X)-spaces.
@article{bwmeta1.element.bwnjournal-article-smv129i2p97bwm, author = {Karl Lermer}, title = {The Grothendieck-Pietsch domination principle for nonlinear summing integral operators}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {97-112}, zbl = {0911.47022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p97bwm} }
Lermer, Karl. The Grothendieck-Pietsch domination principle for nonlinear summing integral operators. Studia Mathematica, Tome 129 (1998) pp. 97-112. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p97bwm/
[00000] [1] J. Batt, Nonlinear integral operators on C(S,E), Studia Math. 48 (1973), 147-181.
[00001] [2] J. Batt and J. Berg, Linear bounded transformations on the space of continuous functions, J. Funct. Anal. 4 (1969), 215-239. | Zbl 0183.13502
[00002] [3] F. Bombal, Operators on spaces of vector valued continuous functions, Extracta Math. 1 (1986), 103-114.
[00003] [4] F. Bombal and P. Cembranos, Characterizations of some classes of operators on spaces of vector valued continuous functions, Math. Proc. Cambridge Philos. Soc. 97 (1985), 137-146. | Zbl 0564.47013
[00004] [5] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
[00005] [6] J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
[00006] [7] N. Dinculeanu, Vector Measures, Pergamon Press, Oxford, 1967.
[00007] [8] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
[00008] [9] H. Jarchow, Locally Convex Spaces, Teubner, Stuttgart, 1981. | Zbl 0466.46001
[00009] [10] K. Lermer, Characterizations of weakly compact nonlinear integral operators on C(S)-spaces, Stud. Cerc. Mat. 48 (1996), 365-378. | Zbl 0859.47035
[00010] [11] A. Pietsch, Operator Ideals, North-Holland, 1980.