An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property
Cabello, J. ; Nieto, E.
Studia Mathematica, Tome 129 (1998), p. 185-196 / Harvested from The Polish Digital Mathematics Library

C.-M. Cho and W. B. Johnson showed that if a subspace E of p, 1 < p < ∞, has the compact approximation property, then K(E) is an M-ideal in ℒ(E). We prove that for every r,s ∈ ]0,1] with r2+s2<1, the James space can be provided with an equivalent norm such that an arbitrary subspace E has the metric compact approximation property iff there is a norm one projection P on ℒ(E)* with Ker P = K(E)⊥ satisfying ∥⨍∥ ≥ r∥Pf∥ + s∥φ - Pf∥ ∀⨍ ∈ ℒ(E)*. A similar result is proved for subspaces of upper p-spaces (e.g. Lorentz sequence spaces d(w, p) and certain renormings of Lp).

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216498
@article{bwmeta1.element.bwnjournal-article-smv129i2p185bwm,
     author = {J. Cabello and E. Nieto},
     title = {An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {185-196},
     zbl = {0913.46019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p185bwm}
}
Cabello, J.; Nieto, E. An ideal characterization of when a subspace of certain Banach spaces has the metric compact approximation property. Studia Mathematica, Tome 129 (1998) pp. 185-196. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p185bwm/

[00000] [1] E. M. Alfsen and E. G. Effros, Structure in real Banach spaces. Parts I and II, Ann. of Math. 96 (1972), 98-173. | Zbl 0248.46019

[00001] [2] J. C. Cabello and E. Nieto, On properties of M-ideals, Rocky Mountain J. Math., to appear. | Zbl 0936.46014

[00002] [3] J. C. Cabello, E. Nieto and E. Oja, On ideals of compact operators satisfying the M(r,s)-inequality, J. Math. Anal. Appl., to appear. | Zbl 0917.47040

[00003] [4] C.-M. Cho and W. B. Johnson, A characterization of subspaces X of lp for which K(X) is an M-ideal in L(X), Proc. Amer. Math. Soc. 93 (1985), 466-470. | Zbl 0537.47010

[00004] [5] D. Van Dulst, Reflexive and Superreflexive Banach spaces, Math. Centre Tracts 102, Amsterdam, 1978. | Zbl 0412.46006

[00005] [6] M. Feder and P. Saphar, Spaces of compact operators and their dual spaces, Israel J. Math. 21 (1975), 38-49. | Zbl 0325.47028

[00006] [7] G. Godefroy, N. J. Kalton, and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59. | Zbl 0814.46012

[00007] [8] G. Godefroy and D. Saphar, Duality in spaces of operators and smooth norms in Banach spaces, Illinois J. Math. 32 (1988), 672-695. | Zbl 0631.46015

[00008] [9] P. Harmand and Å. Lima, Banach spaces which are M-ideals in their biduals, Trans. Amer. Math. Soc. 283 (1984), 253-264. | Zbl 0545.46009

[00009] [10] P. Harmand, D. Werner and W. Werner, M-ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993. | Zbl 0789.46011

[00010] [11] J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934. | Zbl 0464.46020

[00011] [12] J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311. | Zbl 0412.47024

[00012] [13] N. J. Kalton, M-ideals of compact operators, Illinois J. Math. 37 (1993), 147-169. | Zbl 0824.46029

[00013] [14] Å. Lima, Property (wM*) and the unconditional metric compact approximation property, Studia Math. 113 (1995), 249-263. | Zbl 0826.46013

[00014] [15] E. Oja, On the uniqueness of the norm-preserving extension of a linear functional in the Hahn-Banach theorem, Izv. Akad. Nauk Est. SSR Ser. Fiz. Mat. 33 (1984), 424-438 (in Russian).

[00015] [16] E. Oja, Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246 (in Russian); English transl.: Math. Notes 43 (1988), 134-139.

[00016] [17] E. Oja and D. Werner, Remarks on M-ideals of compact operators on XpX, Math. Nachr. 152 (1991), 101-111. | Zbl 0744.47039

[00017] [18] R. Payá and W. Werner, An approximation property related to M-ideals of compact operators, Proc. Amer. Math. Soc. 111 (1991), 993-1001. | Zbl 0744.47040

[00018] [19] R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255. | Zbl 0096.31102