It is shown that there exists a flow on a Lebesgue space with finite entropy and an extremal σ-algebra of it which is not perfect.
@article{bwmeta1.element.bwnjournal-article-smv129i2p179bwm, author = {B. Kami\'nski and Z. Kowalski}, title = {On extremal and perfect $\sigma$-algebras for flows}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {179-183}, zbl = {0903.28014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p179bwm} }
Kamiński, B.; Kowalski, Z. On extremal and perfect σ-algebras for flows. Studia Mathematica, Tome 129 (1998) pp. 179-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p179bwm/
[00000] [1] F. Blanchard, Partitions extrêmales des flots d'entropie infinie, Z. Wahrsch. Verw. Gebiete 36 (1976), 129-136. | Zbl 0319.28012
[00001] [2] F. Blanchard, K-flots et théorème de renouvellement, ibid., 345-358. | Zbl 0328.60036
[00002] [3] M. Binkowska and B. Kamiński, Entropy increase for -actions on a Lebesgue space, Israel J. Math. 88 (1994), 307-318. | Zbl 0826.28008
[00003] [4] S. Goldstein and O. Penrose, A non-equilibrium entropy for dynamical systems, J. Statist. Phys. 24 (1981), 325-343. | Zbl 0516.70021
[00004] [5] B. M. Gurevich, Some existence conditions for K-decompositions for special flows, Trans. Moscow Math. Soc. 17 (1967), 99-126. | Zbl 0207.48502
[00005] [6] B. M. Gurevich, Perfect partitions for ergodic flows, Funktsional. Anal. i Prilozhen. 11 (3) (1977), 20-23 (in Russian).
[00006] [7] B. Kamiński, The theory of invariant partitions for -actions, Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 349-362. | Zbl 0479.28016
[00007] [8] B. Kamiński, Z. S. Kowalski and P. Liardet, On extremal and perfect σ-algebras for -actions, Studia Math. 124 (1997), 173-178. | Zbl 0882.28015
[00008] [9] V. A. Rokhlin, Lectures on the entropy theory of measure-preserving transformations, Uspekhi Mat. Nauk 22 (5) (1967), 3-56 (in Russian).
[00009] [10] T. Shimano, An invariant of systems in the ergodic theory, Tôhoku Math. J. 30 (1978), 337-350. | Zbl 0394.28009
[00010] [11] T. Shimano, Multiplicity of helices of a special flow, ibid. 31 (1979), 49-55. | Zbl 0412.28011
[00011] [12] T. Shimano, Multiplicity of helices for a regularly increasing sequence of σ-fields, ibid. 36 (1984), 141-148. | Zbl 0551.28021
[00012] [13] T. Shimano, On helices for Kolmogorov system with two indices, Math. J. Toyama Univ. 14 (1991), 213-226. | Zbl 0768.60031