If A generates a bounded cosine function on a Banach space X then the negative square root B of A generates a holomorphic semigroup, and this semigroup is the conjugate potential transform of the cosine function. This connection is studied in detail, and it is used for a characterization of cosine function generators in terms of growth conditions on the semigroup generated by B. The characterization relies on new results on the inversion of the vector-valued conjugate potential transform.
@article{bwmeta1.element.bwnjournal-article-smv129i2p137bwm, author = {V. Keyantuo and P. Vieten}, title = {On analytic semigroups and cosine functions in Banach spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {137-156}, zbl = {0910.47035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p137bwm} }
Keyantuo, V.; Vieten, P. On analytic semigroups and cosine functions in Banach spaces. Studia Mathematica, Tome 129 (1998) pp. 137-156. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i2p137bwm/
[00000] [1] W. Arendt, Vector-valued Laplace transforms and Cauchy problems, Israel J. Math. 59 (1987), 327-352. | Zbl 0637.44001
[00001] [2] W. Arendt, personal communication.
[00002] [3] W. Arendt and H. Kellermann, Integrated solutions of Volterra integrodifferential equations and applications, in: Volterra Integrodifferential Equations in Banach Spaces and Applications (Proc. Conf. Trento 1987), G. Da Prato and M. Iannelli (eds.), Pitman Res. Notes Math. Ser. 190, Longman Sci. Tech., Harlow, 1989, 21-51. | Zbl 0675.45017
[00003] [4] J. W. Dettman, Initial-boundary value problems related through the Stieltjes transform, J. Math. Anal. Appl. 25 (1969), 341-349. | Zbl 0169.43203
[00004] [5] O. El Mennaoui and V. Keyantuo, Trace theorems for holomorphic semigroups and the second order Cauchy problem, Proc. Amer. Math. Soc. 124 (1996), 1445-1458. | Zbl 0852.47017
[00005] [6] H. O. Fattorini, Second Order Linear Differential Equations in Banach Spaces, North-Holland, Amsterdam, 1985. | Zbl 0564.34063
[00006] [7] J. A. Goldstein, Semigroups of Linear Operators and Applications, Oxford Math. Monographs, Oxford Univ. Press, New York, 1985. | Zbl 0592.47034
[00007] [8] E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, 1975. | Zbl 0438.00001
[00008] [9] M. Hieber, Integrated semigroups and differential operators on -spaces, Math. Ann. 291 (1991), 1-16.
[00009] [10] E. Hille and R. S. Phillips, Functional Analysis and Semi-Groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc. Providence, R.I., 1957. | Zbl 0078.10004
[00010] [11] S. Kurepa, A cosine functional equation in Banach algebras, Acta Sci. Math. (Szeged) 23 (1962), 255-267. | Zbl 0113.31702
[00011] [12] H. R. Thieme, Integrated semigroups and integrated solutions to the abstract Cauchy problem, J. Math. Anal. Appl. 152 (1990), 416-447. | Zbl 0738.47037
[00012] [13] P. Vieten, Holomorphie und Laplace Transformation Banachraumwertiger Funktionen, Ph.D. thesis, Shaker, Aachen, 1995.
[00013] [14] D. V. Widder, An Introduction to Transform Theory, Academic Press, New York, 1971. | Zbl 0219.44001
[00014] [15] K. Yosida, Functional Analysis, Springer, New York, 1980.