We study various characterizations of the Hardy spaces via the discrete Hilbert transform and via maximal and square functions. Finally, we present the equivalence with the classical atomic characterization of given by Coifman and Weiss in [CW]. Our proofs are based on some results concerning functions of exponential type.
@article{bwmeta1.element.bwnjournal-article-smv129i1p31bwm, author = {Santiago Boza and Mar\'\i a Carro}, title = {Discrete Hardy spaces}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {31-50}, zbl = {0903.42011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i1p31bwm} }
Boza, Santiago; Carro, María. Discrete Hardy spaces. Studia Mathematica, Tome 129 (1998) pp. 31-50. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i1p31bwm/
[00000] [AC] P. Auscher and M. J. Carro, On relations between operators on , and , Studia Math. 101 (1992), 165-182.
[00001] [B] R. P. Boas, Entire Functions, Academic Press, 1954. | Zbl 0058.30201
[00002] [C] R. Coifman, A real-variable characterization of , Studia Math. 51 (1974), 269-274. | Zbl 0289.46037
[00003] [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023
[00004] [E] C. M. Eoff, The discrete nature of the Paley-Wiener spaces, Proc. Amer. Math. Soc. 123 (1995), 505-512. | Zbl 0820.30017
[00005] [FS] C. Fefferman and E. Stein, spaces of several variables, Acta Math. 129 (1972), 137-193. | Zbl 0257.46078
[00006] [FJW] M. Frazier, B. Jawerth and G. Weiss, Littlewood-Paley Theory and the Study of Function Spaces, CBMS Regional Conf. Ser. 79, Amer. Math. Soc., 1991. | Zbl 0757.42006
[00007] [H] Y.-S. Han, Triebel-Lizorkin spaces on spaces of homogeneous type, Studia Math. 108 (1994), 247-273. | Zbl 0822.46033
[00008] [MS] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), 271-309. | Zbl 0431.46019
[00009] [M] A. Miyachi, On some Fourier multipliers for , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 157-179. | Zbl 0433.42019
[00010] [S] C. E. Shannon, Communication in the presence of noise, Proc. IRE 37 (1949), 10-21.
[00011] [Su] Q. Sun, Sequence spaces and stability of integer translates, Z. Anal. Anwendungen 12 (1993), 567-584. | Zbl 0801.46006
[00012] [U] A. Uchiyama, A maximal function characterization of on the spaces of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592. | Zbl 0503.46020