Pointwise upper bounds for characters of compact, connected, simple Lie groups are obtained which enable one to prove that if μ is any central, continuous measure and n exceeds half the dimension of the Lie group, then . When μ is a continuous, orbital measure then is seen to belong to . Lower bounds on the p-norms of characters are also obtained, and are used to show that, as in the abelian case, m-fold products of Sidon sets are not p-Sidon if p < 2m/(m+1).
@article{bwmeta1.element.bwnjournal-article-smv129i1p1bwm, author = {Kathryn Hare}, title = {The size of characters of compact Lie groups}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {1-18}, zbl = {0946.43006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv129i1p1bwm} }
Hare, Kathryn. The size of characters of compact Lie groups. Studia Mathematica, Tome 129 (1998) pp. 1-18. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv129i1p1bwm/
[00000] [1] T. Bröcker and T. tom Dieck, Representations of Compact Lie Groups, Springer, New York, 1985. | Zbl 0581.22009
[00001] [2] D. Cartwright and J. McMullen, A structural criterion for the existence of infinite Sidon sets, Pacific J. Math. 96 (1981), 301-317. | Zbl 0445.43006
[00002] [3] A. Dooley, Norms of characters and lacunarity for compact Lie groups, J. Funct. Anal. 32 (1979), 254-267. | Zbl 0404.43007
[00003] [4] S. Giulini, P. Soardi and G. Travaglini, Norms of characters and Fourier series on compact Lie groups, ibid. 46 (1982), 88-101. | Zbl 0494.22009
[00004] [5] K. Hare, Properties and examples of multipliers, Indiana Univ. Math. J. 38 (1989), 211-227. | Zbl 0655.43003
[00005] [6] K. Hare, Central Sidonicity for compact Lie groups, Ann. Inst. Fourier (Grenoble) 45 (1995), 547-564. | Zbl 0820.43003
[00006] [7] K. Hare and D. Wilson, A structural criterion for the existence of infinite central Λ (p) sets, Trans. Amer. Math. Soc. 337 (1993), 907-925. | Zbl 0796.43003
[00007] [8] K. Hare and D. Wilson, Weighted p-Sidon sets, J. Austral. Math. Soc. 61 (1996), 73-95. | Zbl 0874.43005
[00008] [9] J. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972. | Zbl 0254.17004
[00009] [10] J. Lopez and K. Ross, Sidon Sets, Lecture Notes in Pure and Appl. Math. 13, Marcel Dekker, New York, 1975.
[00010] [11] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1981. | Zbl 0474.43004
[00011] [12] M. Mimura and H. Toda, Topology of Lie Groups, Transl. Math. Monographs 91, Amer. Math. Soc., Providence, R.I., 1991. | Zbl 0757.57001
[00012] [13] D. Ragozin, Central measures on compact simple Lie groups, J. Funct. Anal. 10 (1972), 212-229. | Zbl 0286.43002
[00013] [14] F. Ricci and G. Travaglini, - estimates for orbital measures and Radon transforms on compact Lie groups and Lie algebras, ibid. 129 (1995), 132-147. | Zbl 0843.43011
[00014] [15] D. Rider, Central lacunary sets, Monatsh. Math. 76 (1972), 328-338. | Zbl 0258.43008
[00015] [16] V. Varadarajan, Lie Groups, Lie Algebras and their Representations, Springer, New York, 1984. | Zbl 0955.22500
[00016] [17] R. Vrem, -improving measures on hypergroups, in: Probability Measures on Groups, IX (Oberwolfach, 1988), Lecture Notes in Math. 1379, Springer, Berlin, 1989, 389-397.