Let A be a C*-algebra. We prove that every absolutely summing operator from A into factors through a Hilbert space operator that belongs to the 4-Schatten-von Neumann class. We also provide finite-dimensional examples that show that one cannot replace the 4-Schatten-von Neumann class by the p-Schatten-von Neumann class for any p < 4. As an application, we show that there exists a modulus of capacity ε → N(ε) so that if A is a C*-algebra and with , then for every ε >0, the ε-capacity of the image of the unit ball of A under T does not exceed N(ε). This answers positively a question raised by Pełczyński.
@article{bwmeta1.element.bwnjournal-article-smv128i3p273bwm, author = {Narcisse Randrianantoanina}, title = {Factorization of operators on C*-algebras}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {273-285}, zbl = {0914.47026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i3p273bwm} }
Randrianantoanina, Narcisse. Factorization of operators on C*-algebras. Studia Mathematica, Tome 129 (1998) pp. 273-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i3p273bwm/
[00000] [1] C. H. Chu and B. Iochum, Complementation of Jordan triples in von Neumann algebras, Proc. Amer. Math. Soc. 108 (1990), 19-24. | Zbl 0694.17019
[00001] [2] J. Diestel, Sequences and Series in Banach Spaces, Grad. Texts in Math. 92, Springer, New York, 1984.
[00002] [3] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995. | Zbl 0855.47016
[00003] [4] Y. Gordon and D. R. Lewis, Absolutely summing operators and local unconditional structures, Acta Math. 133 (1974), 27-48. | Zbl 0291.47017
[00004] [5] S. Heinrich, Ultraproducts in Banach space theory, J. Reine Angew. Math. 313 (1980), 72-104. | Zbl 0412.46017
[00005] [6] R. V. Kadison and J. R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. II, Pure Appl. Math. 100, Academic Press, Orlando, Fla., 1986. | Zbl 0601.46054
[00006] [7] A. N. Kolmogorov and V. M. Tikhomirov, ε-Entropy and ε-capacity of sets in function spaces, Uspekhi Mat. Nauk 86 (1959), 3-86 (in Russian); English transl.: Amer. Math. Soc. Trans. Ser. 2 17 (1961), 277-364.
[00007] [8] S. Kwapień, Some remarks on (p,q)-summing operators on -spaces, Studia Math. 29 (1968), 327-337. | Zbl 0182.17001
[00008] [9] B. S. Mitjagin [B. S. Mityagin] and A. Pełczyński, Nuclear operators and approximative dimension, in: Proc. ICM (Moscow, 1966), Mir, Moscow, 1968, 366-372.
[00009] [10] A. Pełczyński, Compactness of absolutely summing operators, in: Linear and Complex Analysis Problem Book 3, Part I, V. P. Havin and N. K. Nikolski (eds.), Lecture Notes in Math. 1573, Springer, 1994, 19-20.
[00010] [11] A. Pełczyński and C. Schütt, Factoring the natural injection through finite dimensional Banach spaces and geometry of finite dimensional unitary ideals, in: Mathematical Analysis and Applications, Part B, L. Nachbin (ed.), Adv. Math. Suppl. Stud. 7B, Academic Press, 1981, 653-683.
[00011] [12] A. Pietsch, Operator Ideals, North-Holland Math. Library 20, North-Holland, 1980.
[00012] [13] G. Pisier, Grothendieck's theorem for non-commutative C*-algebras with appendix on Grothendieck's constants, J. Funct. Anal. 29 (1978), 397-415. | Zbl 0388.46043
[00013] [14] G. Pisier, Factorization of operators through or and non-commutative generalizations, Math. Ann. 276 (1986), 105-136. | Zbl 0619.47016
[00014] [15] N. Randrianantoanina, Absolutely summing operators on non-commutative C*-algebras and applications, Houston J. Math., to appear. | Zbl 0981.46036
[00015] [16] A. I. Singh and N. Mittal, Complete finite representability in C*-algebras, Yokohama Math. J. 38 (1991), 83-94.
[00016] [17] M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
[00017] [18] N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monographs Surveys Pure Appl. Math. 38, Longman Sci. Tech., 1989. | Zbl 0721.46004
[00018] [19] H. Upmeier, Symmetric Banach Manifolds and Jordan C*-Algebras, North-Holland Math. Stud. 104, North-Holland, Amsterdam, 1985.
[00019] [20] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, 1991. | Zbl 0724.46012