We study smoothness spaces generated by maximal functions related to the local approximation errors of integral operators. It turns out that in certain cases these smoothness classes coincide with the spaces , 0 < p≤∞, introduced by DeVore and Sharpley [DS] by means of the so-called sharp maximal functions of Calderón and Scott. As an application we characterize the spaces in terms of the coefficients of wavelet decompositions.
@article{bwmeta1.element.bwnjournal-article-smv128i3p219bwm, author = {G. Kyriazis}, title = {<title-group xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><article-title/></title-group>}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {219-241}, zbl = {0903.42009}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i3p219bwm} }
Kyriazis, G.. Studia Mathematica, Tome 129 (1998) pp. 219-241. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i3p219bwm/
[00000] [BS] C. Bennett and R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988. | Zbl 0647.46057
[00001] [CS] A. Calderón, and R. Scott, Sobolev type inequalities for p>0, Studia Math. 62 (1978), 75-92. | Zbl 0399.46031
[00002] [CDF] A. Cohen, I. Daubechies and J.-C. Feauveau, Biorthogonal bases of compactly supported wavelets, Comm. Pure Appl. Math. 45 (1992), 485-560. | Zbl 0776.42020
[00003] [D] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992. | Zbl 0776.42018
[00004] [DP] R. DeVore and V. Popov, Interpolation of Besov spaces, Trans. Amer. Math. Soc. 305 (1988), 397-414. | Zbl 0646.46030
[00005] [DS] R. DeVore and R. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 293 (1984). | Zbl 0529.42005
[00006] [DY] R. DeVore and X. Yu, Degree of adaptive approximation, Math. Comp. 55 (1990), 625-635. | Zbl 0723.41015
[00007] [K] G. Kyriazis, Approximation of distribution spaces by means of kernel operators, J. Fourier Anal. Appl. 2 (1996), 261-286. | Zbl 0893.46030
[00008] [LM] P. G. Lemarié and G. Malgouyres, Support des fonctions de base dans une analyse multi-résolution, C. R. Acad. Sci. Paris 313 (1991), 377-380. | Zbl 0759.42019
[00009] [M] Y. Meyer, Ondelettes et Opérateurs I: Ondelettes, Hermann 1990. | Zbl 0694.41037
[00010] [T] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992. | Zbl 0763.46025