We study existence, uniqueness, and smoothing properties of the solutions to a class of linear second order elliptic and parabolic differential equations with unbounded coefficients in . The main results are global Schauder estimates, which hold in spite of the unboundedness of the coefficients.
@article{bwmeta1.element.bwnjournal-article-smv128i2p171bwm, author = {Alessandra Lunardi}, title = {Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $$\mathbb{R}$^{n}$ }, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {171-198}, zbl = {0899.35014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p171bwm} }
Lunardi, Alessandra. Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in $ℝ^{n}$ . Studia Mathematica, Tome 129 (1998) pp. 171-198. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p171bwm/
[00000] [1] D. G. Aronson and P. Besala, Parabolic equations with unbounded coefficients, J. Differential Equations 3 (1967), 1-14. | Zbl 0149.06804
[00001] [2] J. S. Baras, G. O. Blankenship and W. E. Hopkins, Existence, uniqueness and asymptotic behavior of solutions to a class of Zakai equations with unbounded coefficients, IEEE Trans. Automat. Control 28 (1983), 203-214. | Zbl 0535.93063
[00002] [3] A. Bensoussan and J.-L. Lions, Applications of Variational Inequalities in Stochastic Control, North-Holland, Amsterdam, 1982.
[00003] [4] P. Besala, On the existence of a fundamental solution for a parabolic differential equation with unbounded coefficients, Ann. Polon. Math. 29 (1975), 403-409. | Zbl 0305.35047
[00004] [5] W. Bodanko, Sur le problème de Cauchy et les problèmes de Fourier pour les équations paraboliques dans un domaine non borné, ibid. 28 (1966), 79-94. | Zbl 0139.05504
[00005] [6] P. Cannarsa and V. Vespri, Generation of analytic semigroups by elliptic operators with unbounded coefficients, SIAM J. Math. Anal. 18 (1987), 857-872. | Zbl 0623.47039
[00006] [7] S. Cerrai, Elliptic and parabolic equations in with coefficients having polynomial growth, Comm. Partial Differential Equations 21 (1996), 281-317. | Zbl 0851.35049
[00007] [8] S. Cerrai, Some results for second order elliptic operators having unbounded coefficients, preprint, Scuola Norm. Sup. Pisa, 1996.
[00008] [9] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, 1990. | Zbl 0699.35006
[00009] [10] M. H. Davis and S. I. Markus, An Introduction to Nonlinear Filtering, NATO Adv. Study Inst. Ser., Reidel, Dordrecht, 1980.
[00010] [11] G. Da Prato and A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions, J. Funct. Anal. 131 (1995), 94-114. | Zbl 0846.47004
[00011] [12] W. H. Fleming and S. K. Mitter, Optimal control and nonlinear filtering for nondegenerate diffusion processes, Stochastics 8 (1982), 63-77. | Zbl 0493.93047
[00012] [13] S. Ito, Fundamental solutions of parabolic differential equations and boundary value problems, Japan. J. Math. 27 (1957), 5-102.
[00013] [14] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Basel, 1995. | Zbl 0816.35001
[00014] [15] A. Lunardi, An interpolation method to characterize domains of generators of semigroups, Semigroup Forum 53 (1996), 321-329. | Zbl 0859.47030
[00015] [16] A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces with respect to invariant measures, Trans. Amer. Math. Soc. 349 (1997), 155-169. | Zbl 0890.35030
[00016] [17] A. Lunardi and V. Vespri, Optimal and Schauder estimates for elliptic and parabolic operators with unbounded coefficients, in: Reaction-Diffusion Systems, Proc., G. Caristi and E. Mitidieri (eds.), Lecture Notes in Pure and Appl. Math. 194, M. Dekker, 1997, 217-239. | Zbl 0887.47034
[00017] [18] A. Lunardi and V. Vespri, Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in , Rend. Mat., volume in honour of P. Grisvard, to appear. | Zbl 0899.35027
[00018] [19] S. J. Sheu, Solution of certain parabolic equations with unbounded coefficients and its application to nonlinear filtering, Stochastics 10 (1983), 31-46. | Zbl 0533.60068
[00019] [20] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.