Dominated ergodic theorems in rearrangement invariant spaces
Braverman, Michael ; Rubshtein, Ben-Zion ; Veksler, Alexander
Studia Mathematica, Tome 129 (1998), p. 145-157 / Harvested from The Polish Digital Mathematics Library

We study conditions under which Dominated Ergodic Theorems hold in rearrangement invariant spaces. Consequences for Orlicz and Lorentz spaces are given. In particular, our results generalize the classical theorems for the spaces Lp and the classes LlognL.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216480
@article{bwmeta1.element.bwnjournal-article-smv128i2p145bwm,
     author = {Michael Braverman and Ben-Zion Rubshtein and Alexander Veksler},
     title = {Dominated ergodic theorems in rearrangement invariant spaces},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {145-157},
     zbl = {0913.46027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p145bwm}
}
Braverman, Michael; Rubshtein, Ben-Zion; Veksler, Alexander. Dominated ergodic theorems in rearrangement invariant spaces. Studia Mathematica, Tome 129 (1998) pp. 145-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p145bwm/

[00000] [AM90] M. Ariño and B. Muckenhoupt, Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions, Trans. Amer. Math. Soc. 320 (1990), 727-735. | Zbl 0716.42016

[00001] [B93] M. Braverman, On a class of operators, J. London Math. Soc. 47 (1993), 119-128. | Zbl 0732.47033

[00002] [BM77] M. Braverman and A. Mekler, On the Hardy-Littlewood property of symmetric spaces, Siberian Math. J. 18 (1977), 371-385. | Zbl 0411.46016

[00003] [C66] A. P. Calderón, Spaces between L1 and L and the theorem of Marcinkiewicz, Studia Math. 26 (1966), 273-299.

[00004] [Do53] J. L. Doob, Stochastic Processes, Wiley, New York, 1953.

[00005] [De73] Y. Derriennic, On integrability of the supremum of ergodic ratios, Ann. Probab. 1 (1973), 338-340. | Zbl 0263.28015

[00006] [DS58] N. Dunford and J. Schwartz, Linear Operators, part I, Interscience, New York, 1958.

[00007] [ES92] G. A. Edgar and L. Sucheston, Stopping Times and Directed Processes, Encyclopedia Math. Appl., Cambridge Univ. Press, 1992. | Zbl 0779.60032

[00008] [G86] D. Gilat, The best bound in the L logL inequality of Hardy and Littlewood and its martingale counterpart, Proc. Amer. Math. Soc. 97 (1986), 429-436.

[00009] [KR61] M. A. Krasnosel'skiĭ and Ya. B. Rutitskiĭ, Convex Functions and Orlicz Spaces, Noordhoff, 1961.

[00010] [KPS82] S. G. Krein, Yu. Petunin and E. Semenov, Interpolation of Linear Operators, Transl. Math. Monographs 54, Amer. Math. Soc., Providence, 1982.

[00011] [K85] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math., de Gruyter, Berlin, 1985.

[00012] [LT79] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. Function Spaces, Springer, 1979. | Zbl 0403.46022

[00013] [M65] B. S. Mityagin, An interpolation theorem for modular spaces, Mat. Sb. 66 (1965), 473-482 (in Russian).

[00014] [O71] D. S. Ornstein, A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1971), 77-79. | Zbl 0212.40102

[00015] [Sa90] E. T. Sawyer, Boundedness of classical operators in classical Lorentz spaces, Studia Math. 96 (1990), 145-158. | Zbl 0705.42014

[00016] [SW71] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.

[00017] [St93] V. D. Stepanov, The weighted Hardy's inequality for nonincreasing functions, Trans. Amer. Math. Soc. 338 (1993), 173-186. | Zbl 0786.26015

[00018] [V85] A. Veksler, An ergodic theorem in symmetric spaces, Sibirsk. Mat. Zh. 24 (1985), 189-191 (in Russian). | Zbl 0603.28017