The possibilities of almost sure approximation of unbounded operators in by multiples of projections or unitary operators are examined.
@article{bwmeta1.element.bwnjournal-article-smv128i2p103bwm, author = {Ryszard Jajte and Adam Paszkiewicz}, title = {Almost sure approximation of unbounded operators in $L\_2 (X,A,$\mu$)$ }, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {103-120}, zbl = {0905.47011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p103bwm} }
Jajte, Ryszard; Paszkiewicz, Adam. Almost sure approximation of unbounded operators in $L_2 (X,A,μ)$ . Studia Mathematica, Tome 129 (1998) pp. 103-120. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i2p103bwm/
[00000] [1] J. L. Ciach, R. Jajte and A. Paszkiewicz, On the almost sure approximation of self-adjoint operators in , Math. Proc. Cambridge Philos. Soc. 119 (1996), 537-543. | Zbl 0846.47011
[00001] [2] J. L. Ciach, R. Jajte and A. Paszkiewicz, On the almost sure approximation and convergence of linear operators in -spaces, Probab. Math. Statist. 15 (1995), 215-225. | Zbl 0859.60027
[00002] [3] P. R. Halmos, Two subspaces, Trans. Amer. Math. Soc. 144 (1969), 381-389. | Zbl 0187.05503
[00003] [4] R. Jajte and A. Paszkiewicz, Topics in almost sure approximation of operators in -spaces, in: Interaction between Functional Analysis, Harmonic Analysis, and Probability (Columbia, Mo., 1994), N. Kalton, E. Saab and S. M. Montgomery-Smith (eds.), Lecture Notes in Pure and Appl. Math. 175, M. Dekker, New York, 1996, 219-228. | Zbl 0874.47008
[00004] [5] M. Loève, Probability Theory. II, Springer, New York, 1978.
[00005] [6] J. Marcinkiewicz, Sur la convergence de séries orthogonales, Studia Math. 6 (1933), 39-45. | Zbl 62.0284.01
[00006] [7] A. Paszkiewicz, Convergences in W*-algebras, J. Funct. Anal. 69 (1986), 143-154. | Zbl 0612.46060
[00007] [8] Ş. Strătilă and L. Zsidó, Lectures on von Neumann Algebras, Editura Academiei, Bucureşti, 1979.
[00008] [9] M. Takesaki, Theory of Operator Algebras, I, Springer, Berlin, 1979.