On the dependence of the orthogonal projector on deformations of the scalar product
Pasternak-Winiarski, Zbigniew
Studia Mathematica, Tome 129 (1998), p. 1-17 / Harvested from The Polish Digital Mathematics Library

We consider scalar products on a given Hilbert space parametrized by bounded positive and invertible operators defined on this space, and orthogonal projectors onto a fixed closed subspace of the initial Hilbert space corresponding to these scalar products. We show that the projector is an analytic function of the scalar product, we give the explicit formula for its Taylor expansion, and we prove some algebraic formulas for projectors.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:216474
@article{bwmeta1.element.bwnjournal-article-smv128i1p1bwm,
     author = {Zbigniew Pasternak-Winiarski},
     title = {On the dependence of the orthogonal projector on deformations of the scalar product},
     journal = {Studia Mathematica},
     volume = {129},
     year = {1998},
     pages = {1-17},
     zbl = {0910.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv128i1p1bwm}
}
Pasternak-Winiarski, Zbigniew. On the dependence of the orthogonal projector on deformations of the scalar product. Studia Mathematica, Tome 129 (1998) pp. 1-17. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv128i1p1bwm/

[00000] [1] S. Bergman, The Kernel Function and Conformal Mapping, Math. Surveys Monographs 5, Amer. Math. Soc., 2nd rev. ed., 1970. | Zbl 0208.34302

[00001] [2] S. G. Krantz, Function Theory of Several Complex Variables, Interscience-Wiley, New York, 1982. | Zbl 0471.32008

[00002] [3] J.-P. Labrousse, The general local form of an analytic mapping into the set of idempotent elements of a Banach algebra, Proc. Amer. Math. Soc. 123 (1995), 3467-3471. | Zbl 0855.47009

[00003] [4] A. Odzijewicz, On reproducing kernels and quantization of states, Comm. Math. Phys. 114 (1988), 577-597. | Zbl 0645.53044

[00004] [5] A. Odzijewicz, Coherent states and geometric quantization, ibid. 150 (1992), 385-413.

[00005] [6] K. Maurin, Analysis, Part I, Elements, PWN-Reidel, Warszawa-Dordrecht, 1976.

[00006] [7] Z. Pasternak-Winiarski, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal. 94 (1990), 110-134. | Zbl 0739.46010

[00007] [8] Z. Pasternak-Winiarski, On reproducing kernels for holomorphic vector bundles, in: Quantization and Infinite-Dimensional Systems, J.-P. Antoine, S. Twareque Ali, W. Lisiecki, I. M. Mladenov and A. Odzijewicz (eds.), Plenum Press, New York, 1994, 109-112. | Zbl 0980.32501

[00008] [9] Z. Pasternak-Winiarski, Bergman spaces and kernels for holomorphic vector bundles, Demonstratio Math. 30 (1997), 199-214. | Zbl 0877.32003

[00009] [10] J. H. Rawnsley, Coherent states and Kähler manifolds, Quart. J. Math. Oxford Ser. 28 (1077), 403-415. | Zbl 0387.58002

[00010] [11] K. Yosida, Functional Analysis, Springer, Berlin, 1965.