We give characterizations of Besov and Triebel-Lizorkin spaces and in smooth domains via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.
@article{bwmeta1.element.bwnjournal-article-smv127i3p277bwm, author = {V. Rychkov}, title = {Intrinsic characterizations of distribution spaces on domains}, journal = {Studia Mathematica}, volume = {129}, year = {1998}, pages = {277-298}, zbl = {0919.46025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-smv127i3p277bwm} }
Rychkov, V. Intrinsic characterizations of distribution spaces on domains. Studia Mathematica, Tome 129 (1998) pp. 277-298. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-smv127i3p277bwm/
[00000] [Bes1] O. V. Besov, On a family of function spaces. Embedding theorems and extensions, Dokl. Akad. Nauk SSSR 126 (1959), 1163-1165 (in Russian). | Zbl 0097.09701
[00001] [Bes2] O. V. Besov, On a family of function spaces in connection with embeddings and extensions, Trudy Mat. Inst. Steklov. 60 (1961), 42-81 (in Russian).
[00002] [Bes3] O. V. Besov, Extension of functions beyond a domain with preservation of difference-differential properties in , Mat. Sb. 66 (1965), 80-96 (in Russian).
[00003] [Bes4] O. V. Besov, Embeddings of Sobolev-Liouville and Lizorkin-Triebel spaces on a domain, Dokl. Akad. Nauk 331 (1993), 538-540 (in Russian). | Zbl 0835.46024
[00004] [BIN] O. V. Besov, V. P. Il'in and S. M. Nikol'skiĭ, Integral Representations of Functions and Embedding Theorems, 2nd ed., Nauka-Fizmatgiz, Moscow, 1996 (in Russian).
[00005] [BPT1] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), 219-246. | Zbl 0861.42009
[00006] [BPT2] H.-Q. Bui, M. Paluszyński and M. H. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces. The case q < 1, in: Proc. Conf. on Harmonic Analysis in Honor of M. de Guzmán (El Escorial, 1996), to appear. | Zbl 0861.42009
[00007] [CKS] D.-C. Chang, S. G. Krantz and E. M. Stein, theory on a smooth domain in and elliptic boundary value problems, J. Funct. Anal. 114 (1993), 286-347. | Zbl 0804.35027
[00008] [FeS] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. | Zbl 0222.26019
[00009] [FrR] J. Franke and T. Runst, Regular elliptic boundary value problems in Besov-Triebel-Lizorkin spaces, Math. Nachr. 174 (1995), 113-149. | Zbl 0843.35026
[00010] [FrJ] M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. | Zbl 0716.46031
[00011] [Hei] N. J. H. Heideman, Duality and fractional integration in Lipschitz spaces, Studia Math. 50 (1974), 65-85. | Zbl 0287.46050
[00012] [Hes] M. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
[00013] [Kal1] G. A. Kalyabin, Function spaces of Lizorkin-Triebel type in domains with Lipschitz boundary, Dokl. Akad. Nauk SSSR 271 (1983), 795-798 (in Russian).
[00014] [Kal2] G. A. Kalyabin, Theorems on extensions, multipliers and diffeomorphisms for generalized Sobolev-Liouville classes in domains with Lipschitz boundary, Trudy Mat. Inst. Steklov. 172 (1985), 173-186 (in Russian).
[00015] [Kal3] G. A. Kalyabin, personal communication, 1994.
[00016] [Liz1] P. I. Lizorkin, Operators connected with fractional derivatives and classes of differentiable functions, Trudy Mat. Inst. Steklov. 117 (1972), 212-243 (in Russian).
[00017] [Liz2] P. I. Lizorkin, Properties of functions of the spaces , ibid. 131 (1974), 158-181 (in Russian).
[00018] [Miy] A. Miyachi, spaces over open subsets of , Studia Math. 95 (1990), 205-228.
[00019] [Mur] T. Muramatu, On Besov spaces and Sobolev spaces of generalized functions defined on a general region, Publ. Res. Inst. Math. Sci. Kyoto Univ. 9 (1974), 325-396. | Zbl 0287.46046
[00020] [P1] J. Peetre, Remarques sur les espaces de Besov. Le cas 0 < p < 1, C. R. Acad. Sci. Paris Sér. A-B 277 (1973), 947-950.
[00021] [P2] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. | Zbl 0302.46021
[00022] [Rud] W. Rudin, Functional Analysis, 2nd ed., McGraw-Hill, New York, 1991.
[00023] [Ry] V. S. Rychkov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, preprint.
[00024] [Sch] T. Schott, Function spaces with exponential weights I, Math. Nachr., to appear. | Zbl 0909.46036
[00025] [See] A. Seeger, A note on Triebel-Lizorkin spaces, in: Approximation and Function Spaces, Banach Center Publ. 22, PWN-Polish Sci. Publ., Warszawa, 1989, 391-400.
[00026] [StT] J.-O. Strömberg and A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, Berlin, 1989.
[00027] [Tai] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space I. Principal properties, J. Math. Mech. 13 (1964), 407-479. | Zbl 0132.09402
[00028] [Tri1] H. Triebel, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation, Ark. Mat. 11 (1973), 13-64.
[00029] [Tri2] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
[00030] [Tri3] H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
[00031] [Tri4] H. Triebel, Local approximation spaces, Z. Anal. Anwendungen 8 (1989), 261-288. | Zbl 0695.46015
[00032] [TrW] H. Triebel and H. Winkelvoß, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), 647-673. | Zbl 0843.46022